




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2抛物线的简单性质A组1.抛物线y=x2(a0)的焦点坐标为()A.a0时为(0,a),a0时为,a0时,x2=4ay的焦点为(0,a);a0时,x2=4ay的焦点为(0,a),这时焦点在y轴负半轴上.故不论a为何值,x2=4ay的焦点总为(0,a),故选C.答案:C2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB中点到x轴的最短距离为()A.B.C.1D.2解析:设AB的中点为M,焦点为F(0,1).过M作准线l:y=-1的垂线MN,过A作ACl于C,过B作BDl于D,则|MN|=3,所以AB中点到x轴的最短距离为3-1=2,此时动弦AB过焦点,故选D.答案:D3.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A.(6,+)B.6,+)C.(3,+)D.3,+)解析:抛物线的焦点到顶点的距离为3,=3,即p=6.又抛物线上的点到准线的距离的最小值为,抛物线上的点到准线的距离的取值范围为3,+).答案:D4.设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是()A.(0,2)B.0,2C.(2,+)D.2,+)解析:设圆的半径为r,因为F(0,2)是圆心,抛物线C的准线方程为y=-2,由圆与准线相交知416,所以8y0+(y0-2)216,即有+4y0-120,解得y02或y02,故选C.答案:C5.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.2B.2C.4D.2解析:由于抛物线关于x轴对称,顶点在坐标原点且经过点M(2,y0),可设方程为y2=2px,由点M到抛物线焦点的距离为3,则由抛物线定义得2+=3,解得p=2,则y2=4x,又M(2,y0)在抛物线y2=4x上,则=8,|OM|=2.答案:B6.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足.如果直线AF的斜率为-,那么|PF|=()A.4B.8C.8D.16解析:设A(-2,y),F(2,0),所以kAF=-,所以y=4,所以yP=4.因为点P在抛物线上,所以=8xP,所以xP=6.由抛物线定义可得|PF|=|PA|=xP-xA=6-(-2)=8.答案:B7.沿直线y=-2发出的光线经抛物线y2=ax反射后,与x轴相交于点A(2,0),则抛物线的准线方程为.解析:由抛物线的几何性质,从焦点发出的光线经抛物线反射后与x轴平行及直线y=-2平行于x轴知A(2,0)为焦点,故准线方程为x=-2.答案:x=-28.一个正三角形的两个顶点在抛物线y2=ax上,另一个顶点在坐标原点,如果这个三角形的面积为36,则a=.解析:设正三角形边长为x.由题意得,36x2sin 60,x=12.当a0时,将(6,6)代入y2=ax,得a=2.当a0),因为点C(5,-5)在抛物线上,所以该抛物线的方程为x2=-5y.(2)设车辆高为h,则|DB|=h+0.5,故D(3.5,h-6.5),代入方程x2=-5y,解得h=4.05,所以车辆通过隧道的限制高度为4.0米.B组1.(2015全国卷高考)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3B.6C.9D.12解析:抛物线y2=8x的焦点坐标为(2,0),E的右焦点的坐标为(2,0).设椭圆E的方程为=1(ab0),c=2.,a=4.b2=a2-c2=12,于是椭圆方程为=1.抛物线的准线方程为x=-2,将其代入椭圆方程可得A(-2,3),B(-2,-3),|AB|=6.答案:B2.抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是()A.B.C.D.3解析:设(x0,y0)为抛物线y=-x2上任意一点,y0=-,d=,dmin=.答案:A3.如图,已知点Q(2,0)及抛物线y=上的动点P(x,y),则y+|PQ|的最小值是()A.2B.3C.4D.2解析:如图所示,过P作PM垂直准线于点M,则由抛物线的定义可知y+|PQ|=|PM|-1+|PQ|=|PF|+|PQ|-1,当且仅当P,F,Q三点共线时,|PF|+|PQ|最小,最小值为|QF|=3.故y+|PQ|的最小值为3-1=2.答案:A4.已知顶点与原点O重合,准线为直线x=-的抛物线上有两点A(x1,y1)和B(x2,y2),若y1y2=-1,则AOB的大小是.解析:由已知得抛物线方程为y2=x,因此=x1x2+y1y2=+y1y2=(-1)2+(-1)=0.AOB=90.答案:905.导学号01844018对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|a|,则a的取值范围是.解析:设点Q的坐标为.由|PQ|a|,得|PQ|2a2,即a2,整理,得+16-8a)0.0,+16-8a0.即a2+恒成立.而2+的最小值为2.a2.答案:(-,26.导学号01844019某大桥在涨水时有最大跨度的中央桥孔,已知上部呈抛物线形,跨度为20米,拱顶距水面6米,桥墩高出水面4米.现有一货船欲过此孔,该货船水下宽度不超过18米,目前吃水线上部中央船体高5米,宽16米,且该货船在现有状况下最多可装1 000吨货物,但每多装150吨货物,船体吃水线就要上升0.04米.若不考虑水下深度,问:该货船在现在状况下能否直接或设法通过该桥孔?为什么?解如图所示,以拱顶为原点,过拱顶的水平直线为x轴,竖直直线为y轴,建立平面直角坐标系.因为拱顶距水面6米,桥墩高出水面4米,所以A(10,-2).设桥孔上部抛物线方程是x2=-2py(p0),则102=-2p(-2),所以p=25,所以抛物线方程为x2=-50y,即y=-x2.若货船沿正中央航行,船宽16米,而当x=8时,y=-82=-1.28,即船体在x=8之间通过,B(8,-1.28),此时B点距水面6+(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 远程工作技能需求-洞察与解读
- 2025第二季度福建中共福州市马尾区委员会办公室招聘编外人员1人模拟试卷及答案详解(易错题)
- 2025广西崇左市人民检察院公开招聘机关文员4人考前自测高频考点模拟试题及答案详解(有一套)
- 2025辽宁鞍山市立山区教育局面向应届毕业生校园招聘2人模拟试卷及参考答案详解1套
- 2025贵州铜仁职业技术学院引进博士研究生15人模拟试卷及完整答案详解1套
- 2025年河北邯郸丛台区公开选聘农村党务(村务)工作者42名模拟试卷带答案详解
- 2025昆明市禄劝县人民法院司法协警招录(2人)考前自测高频考点模拟试题含答案详解
- 供应链透明度提升策略-第23篇-洞察与解读
- 2025广西平果市新安镇人民政府城镇公益性岗位人员招聘2人模拟试卷及答案详解(网校专用)
- 2025广东东莞市水务局招聘聘用人员2人考前自测高频考点模拟试题附答案详解(典型题)
- 墩柱安全教育培训课件
- 新版中华民族共同体概论课件第十五讲新时代与中华民族共同体建设(2012- )-2025年版
- 卫生监督协管五项制度范文(4篇)
- 2025中国低压电能质量市场白皮书
- 2025年全国《家庭教育指导师》考试模拟试题(附答案)
- 航空安全培训计划课件
- 电瓶搬运车安全培训课件
- 数据保护与安全知识培训课件
- 情报共享平台架构-洞察及研究
- 棉纱库存管理办法
- 量具借用管理办法
评论
0/150
提交评论