已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷莎车县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆2 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点3 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+4 已知全集U=0,1,2,3,4,5,6,7,8,9,集合A=0,1,3,5,8,集合B=2,4,5,6,8,则(UA)(UB)=( )A5,8B7,9C0,1,3D2,4,65 已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、6 函数f(x)=x的图象关于( )Ay轴对称B直线y=x对称C坐标原点对称D直线y=x对称7 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件8 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD9 如图,为正方体,下面结论: 平面; ; 平面.其中正确结论的个数是( )A B C D 10某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m311抛物线x2=4y的焦点坐标是( )A(1,0)B(0,1)C()D()12已知函数f(x)=x2,则函数y=f(x)的大致图象是( )ABCD二、填空题13已知条件p:x|xa|3,条件q:x|x22x30,且q是p的充分不必要条件,则a的取值范围是14函数f(x)=的定义域是15已知函数f(x)=xm过点(2,),则m=16若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=17已知i是虚数单位,复数的模为18已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_(单位:)三、解答题19已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 20在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标21将射线y=x(x0)绕着原点逆时针旋转后所得的射线经过点A=(cos,sin)()求点A的坐标;()若向量=(sin2x,2cos),=(3sin,2cos2x),求函数f(x)=,x0,的值域22已知P(m,n)是函授f(x)=ex1图象上任一于点()若点P关于直线y=x1的对称点为Q(x,y),求Q点坐标满足的函数关系式()已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数(s,t)=|sex11|+|tln(t1)|,(sR,t0)的最小值23已知函数f(x)=,求不等式f(x)4的解集24在20142015赛季CBA常规赛中,某篮球运动员在最近5场比赛中的投篮次数及投中次数如下表所示:2分球3分球第1场10投5中4投2中第2场13投5中5投2中第3场8投4中3投1中第4场9投5中3投0中第5场10投6中6投2中(1)分别求该运动员在这5场比赛中2分球的平均命中率和3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分分布列和数学期望莎车县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.2 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.3 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目4 【答案】B【解析】解:由题义知,全集U=0,1,2,3,4,5,6,7,8,9,集合A=0,1,3,5,8,集合B=2,4,5,6,8,所以CUA=2,4,6,7,9,CUB=0,1,3,7,9,所以(CUA)(CUB)=7,9故选B5 【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.6 【答案】C【解析】解:f(x)=+x=f(x)是奇函数,所以f(x)的图象关于原点对称故选C7 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题8 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题9 【答案】【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.10【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题11【答案】B【解析】解:抛物线x2=4y中,p=2, =1,焦点在y轴上,开口向上,焦点坐标为 (0,1),故选:B【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题12【答案】A【解析】解:由题意可得,函数的定义域x0,并且可得函数为非奇非偶函数,满足f(1)=f(1)=1,可排除B、C两个选项当x0时,t=在x=e时,t有最小值为函数y=f(x)=x2,当x0时满足y=f(x)e20,因此,当x0时,函数图象恒在x轴上方,排除D选项故选A二、填空题13【答案】0,2 【解析】解:命题p:|xa|3,解得a3xa+3,即p=(a3,a+3);命题q:x22x30,解得1x3,即q=(1,3)q是p的充分不必要条件,qp,解得0a2,则实数a的取值范围是0,2故答案为:0,2【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题14【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x315【答案】1 【解析】解:将(2,)代入函数f(x)得: =2m,解得:m=1;故答案为:1【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题16【答案】1或0 【解析】解:满足约束条件的可行域如下图阴影部分所示:kxy+10表示地(0,1)点的直线kxy+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kxy+1=0与y轴垂直,此时k=0或直线kxy+1=0与y=x垂直,此时k=1综上k=1或0故答案为:1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kxy+1=0与y轴垂直或与y=x垂直,是解答的关键17【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题18【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】该几何体是半个圆柱。所以故答案为:三、解答题19【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 20【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题21【答案】 【解析】解:()设射线y=x(x0)的倾斜角为,则tan=,(0,)tan=tan(+)=,由解得,点A的坐标为(,)()f(x)=3sinsin2x+2cos2cos2x=sin2x+cos2x=sin(2x+)由x0,可得2x+,sin(2x+),1,函数f(x)的值域为,【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题22【答案】 【解析】解:(1)因为点P,Q关于直线y=x1对称,所以解得又n=em1,所以x=1e(y+1)1,即y=ln(x1)(2)(s,t)=|sex11|+|tln(t1)1|=,令u(s)=则u(s),v(t)分别表示函数y=ex1,y=ln(t1)图象上点到直线xy1=0的距离由(1)知,umin(s)=vmin(t)而f(x)=ex1,令f(s)=1得s=1,所以umin(s)=故【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解体现了解析几何与函数思想的结合23【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)24【答案】 【解析】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北斗卫星导航市场调研报告
- 2025年南京林业大学006土木工程学院081403市政工程考研报录数据分析报
- 多场景用户调查问卷设计标准模板
- 会议策划与执行方案标准化手册
- 2025年平面设计市场调研报告
- 2025年年中国风电高塔行业发展现状及市场趋势分析报告
- 考三轮车的笔试题库及答案
- 山西初中语文试卷及答案
- 2025年辽宁历史高三题库及答案
- 2025年打捞船行业研究报告
- 《火灾自动报警与联动控制系统工程技术》课程标准
- 中西文化比较与跨文化交际知到课后答案智慧树章节测试答案2025年春南开大学
- 静脉采血在家庭护理中的应用流程
- 冷库设备拆除合同范本
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
- 《锂离子电池人造石墨类负极材料用原料焦》
- 当水墨邂逅油彩(北京师范大学)知到智慧树章节答案
- GB/T 44831-2024皮肤芯片通用技术要求
- 二十四节气-小雪介绍中国传统节日主题班会课件
- 常德民政局离婚协议书范文模板
- 棕色古风实拍山行
评论
0/150
提交评论