




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵定县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=2 已知an=(nN*),则在数列an的前30项中最大项和最小项分别是( )Aa1,a30Ba1,a9Ca10,a9Da10,a303 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 4 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A, B, CV|VDV|0V5 已知集合,则下列关系式错误的是( )A B C D6 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 7 已知正方体的不在同一表面的两个顶点A(1,2,1),B(3,2,3),则正方体的棱长等于( )A4B2CD28 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=59 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限10函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)11已知集合P=x|1xb,bN,Q=x|x23x0,xZ,若PQ,则b的最小值等于( )A0B1C2D312已知,那么夹角的余弦值( )ABC2D二、填空题13定义在上的可导函数,已知的图象如图所示,则的增区间是 xy121O14已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力15命题:“xR,都有x31”的否定形式为16在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.17三角形中,则三角形的面积为 .18若函数的定义域为,则函数的定义域是 三、解答题19已知A、B、C为ABC的三个内角,他们的对边分别为a、b、c,且(1)求A;(2)若,求bc的值,并求ABC的面积 20已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域21已知复数z1满足(z12)(1+i)=1i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z222某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值24已知f(x)=x23ax+2a2(1)若实数a=1时,求不等式f(x)0的解集;(2)求不等式f(x)0的解集贵定县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C2 【答案】C【解析】解:an=1+,该函数在(0,)和(,+)上都是递减的,图象如图,910这个数列的前30项中的最大项和最小项分别是a10,a9故选:C【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题3 【答案】【解析】考点:直线方程4 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为122=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是V|0V故选:D【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目5 【答案】A 【解析】试题分析:因为 ,而,即B、C正确,又因为且,所以,即D正确,故选A. 1考点:集合与元素的关系.6 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性7 【答案】A【解析】解:正方体中不在同一表面上两顶点A(1,2,1),B(3,2,3),AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4正方体的棱长为4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题8 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法9 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题10【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C11【答案】C【解析】解:集合P=x|1xb,bN,Q=x|x23x0,xZ=1,2,PQ,可得b的最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题12【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题二、填空题13【答案】(,2)【解析】试题分析:由,所以的增区间是(,2)考点:函数单调区间14【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得15【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查16【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.17【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等18【答案】【解析】试题分析:依题意得.考点:抽象函数定义域三、解答题19【答案】【解析】解:(1)A、B、C为ABC的三个内角,且cosBcosCsinBsinC=cos(B+C)=,B+C=,则A=;(2)a=2,b+c=4,cosA=,由余弦定理得:a2=b2+c22bccosA=b2+c2+bc=(b+c)2bc,即12=16bc,解得:bc=4,则SABC=bcsinA=4=【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键20【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1,()1=30f(x)(0,321【答案】 【解析】解:z1=2i设z2=a+2i(aR)z1z2=(2i)(a+2i)=(2a+2)+(4a)iz1z2是实数4a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为022【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),即t+,解得10t18,即在10时到18时,需要降温。23【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO由()知PA=AM=PM=2,APM为等边三角形,POAM同理:BOAM平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,PO平面ABCD以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,1,0),P(0,0,),C(,2,0),Q(0,)=(,3,0),=(0,3,),=(0,)设平面AQC的法向量为=(x,y,z),令y=得=(3,5)cos,=直线PD与平面AQC所成角正弦值为24【答案】 【解析】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桂林山水职业学院《学校教育基础》2024-2025学年第一学期期末试卷
- 武汉船舶职业技术学院《线性代数及概率统计》2024-2025学年第一学期期末试卷
- 黑河学院《化工机械与设备》2024-2025学年第一学期期末试卷
- 湘潭理工学院《人物画写生》2024-2025学年第一学期期末试卷
- 基因治疗的概念和原理
- 安顺职业技术学院《机器学习》2024-2025学年第一学期期末试卷
- 毕节幼儿师范高等专科学校《生物医学建模与科学计算》2024-2025学年第一学期期末试卷
- 华中师范大学《搏击基础》2024-2025学年第一学期期末试卷
- 新疆铁道职业技术学院《凹版画》2024-2025学年第一学期期末试卷
- 廊坊职业技术学院《民航快递实训》2024-2025学年第一学期期末试卷
- 安全生产培训(完整版)课件
- 钢结构长廊施工方案
- 信保业务自查问题统计表
- 年产3万吨环保型铝箔容器系列产品生产线项目环境影响报告
- 安庆汇辰药业有限公司高端原料药、医药中间体建设项目环境影响报告书
- 关于术中知晓预防和脑功能监测专家共识
- 河道修防工高级工试题
- 保障农民工工资支付协调机制和工资预防机制
- GB/T 4458.3-2013机械制图轴测图
- GB/T 311.2-2013绝缘配合第2部分:使用导则
- GB/T 13912-2002金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
评论
0/150
提交评论