甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D22 已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A(0,)B(0,C(,D,1)3 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点4 “ab,c0”是“acbc”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)6 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D7 我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”当输入a6 102,b2 016时,输出的a为( )A6B9C12D188 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D9 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D310一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A. B.C. D. 【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力11已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A3BCD12下列命题中正确的是( )A复数a+bi与c+di相等的充要条件是a=c且b=dB任何复数都不能比较大小C若=,则z1=z2D若|z1|=|z2|,则z1=z2或z1=二、填空题13如果直线3ax+y1=0与直线(12a)x+ay+1=0平行那么a等于14当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的1564岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =15设函数f(x)=,则f(f(2)的值为16三角形中,则三角形的面积为 .17下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆18设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)三、解答题19(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则20为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=21设f(x)=ax2(a+1)x+1(1)解关于x的不等式f(x)0;(2)若对任意的a1,1,不等式f(x)0恒成立,求x的取值范围22已知函数f(x)=x3+ax+2()求证:曲线=f(x)在点(1,f(1)处的切线在y轴上的截距为定值;()若x0时,不等式xex+mf(x)am2x恒成立,求实数m的取值范围 23已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn24为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票开始售票后,排队的人数平均每分钟增加b人假设每个窗口的售票速度为c人/min,且当开放2个窗口时,25min后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min后恰好不会出现排队现象若要求售票10min后不会出现排队现象,则至少需要同时开几个窗口?甘州区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键2 【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故|=,|=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+2cosF1PF2,由cosF1PF2(1,1)可得4c2=cosF1PF2(,),即4c2,1,即e21,e1;当P与两焦点F1,F2共线时,可得a+c=2(ac),解得e=;综上可得此椭圆的离心率的取值范围为,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题3 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值4 【答案】A【解析】解:由“ab,c0”能推出“acbc”,是充分条件,由“acbc”推不出“ab,c0”不是必要条件,例如a=1,c=1,b=1,显然acbc,但是ab,c0,故选:A【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题5 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D6 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式7 【答案】【解析】选D.法一:6 1022 016354,2 016543718,54183,18是54和18的最大公约数,输出的a18,选D.法二:a6 102,b2 016,r54,a2 016,b54,r18,a54,b18,r0.输出a18,故选D.8 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C9 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B10【答案】B 11【答案】B【解析】解:依题设P在抛物线准线的投影为P,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|MF|=即有当M,P,F三点共线时,取得最小值,为故选:B【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想12【答案】C【解析】解:A未注明a,b,c,dRB实数是复数,实数能比较大小C =,则z1=z2,正确;Dz1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确故选:C二、填空题13【答案】 【解析】解:直线3ax+y1=0与直线(12a)x+ay+1=0平行,3aa=1(12a),解得a=1或a=,经检验当a=1时,两直线重合,应舍去故答案为:【点评】本题考查直线的一般式方程和平行关系,属基础题14【答案】y=1.7t+68.7 【解析】解: =, =63.6=(2)4.4+(1)1.4+0+1(1.6)+2(2.6)=17=4+1+0+1+2=10=1.7. =63.6+1.73=68.7y关于t的线性回归方程为y=1.7t+68.7故答案为y=1.7t+68.7【点评】本题考查了线性回归方程的解法,属于基础题15【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:416【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等17【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:18【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小三、解答题19【答案】【解析】AB20【答案】 【解析】解:()由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成22列联表如下:非歌迷歌迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得:K2=3.030因为3.0303.841,所以我们没有95%的把握认为“歌迷”与性别有关()由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为=(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)其中ai表示男性,i=1,2,3,bi表示女性,i=1,2由10个等可能的基本事件组成用A表示“任选2人中,至少有1个是女性”这一事件,则A=(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2) ,事件A由7个基本事件组成P(A)= 12【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型21【答案】 【解析】解:(1)f(x)0,即为ax2(a+1)x+10,即有(ax1)(x1)0,当a=0时,即有1x0,解得x1;当a0时,即有(x1)(x)0,由1可得x1;当a=1时,(x1)20,即有xR,x1;当a1时,1,可得x1或x;当0a1时,1,可得x1或x综上可得,a=0时,解集为x|x1;a0时,解集为x|x1;a=1时,解集为x|xR,x1;a1时,解集为x|x1或x;0a1时,解集为x|x1或x(2)对任意的a1,1,不等式f(x)0恒成立,即为ax2(a+1)x+10,即a(x21)x+10,对任意的a1,1恒成立设g(a)=a(x21)x+1,a1,1则g(1)0,且g(1)0,即(x21)x+10,且(x21)x+10,即(x1)(x+2)0,且x(x1)0,解得2x1,且x1或x0可得2x0故x的取值范围是(2,0)22【答案】 【解析】()证明:f(x)的导数f(x)=x2+a,即有f(1)=a+,f(1)=1+a,则切线方程为y(a+)=(1+a)(x1),令x=0,得y=为定值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论