




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷尖扎县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )ABCD2 设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D63 (文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位4 命题“xR,使得x21”的否定是( )AxR,都有x21 BxR,使得x21CxR,使得x21DxR,都有x1或x15 已知M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则实数a的取值范围为( )A(,1)B(,1C(,0)D(,06 已知函数f(x)的图象如图,则它的一个可能的解析式为( )Ay=2By=log3(x+1)Cy=4Dy=7 设x,yR,且满足,则x+y=( )A1B2C3D48 若直线:圆:交于两点,则弦长的最小值为( )A B C D9 已知平面向量与的夹角为,且|=1,|+2|=2,则|=( )A1BC3D210已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是( )A(0,1)B(0,C(0,)D,1)11某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35B =0.7x+1C =0.7x+2.05D =0.7x+0.45 12已知f(x)为定义在(0,+)上的可导函数,且f(x)xf(x)恒成立,则不等式x2f()f(x)0的解集为( )A(0,1)B(1,2)C(1,+)D(2,+)二、填空题13若直线:与直线:垂直,则 .14已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值15已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数16为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 17若函数的定义域为,则函数的定义域是 18等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_三、解答题19已知a0,a1,命题p:“函数f(x)=ax在(0,+)上单调递减”,命题q:“关于x的不等式x22ax+0对一切的xR恒成立”,若pq为假命题,pq为真命题,求实数a的取值范围20为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 21(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)22如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD23设f(x)=ax2(a+1)x+1(1)解关于x的不等式f(x)0;(2)若对任意的a1,1,不等式f(x)0恒成立,求x的取值范围24已知等差数列an中,其前n项和Sn=n2+c(其中c为常数),(1)求an的通项公式;(2)设b1=1,an+bn是公比为a2等比数列,求数列bn的前n项和Tn尖扎县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:因为以A=2,4,6,7,8,11,12,13中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P=,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比2 【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观3 【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 4 【答案】D【解析】解:命题是特称命题,则命题的否定是xR,都有x1或x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础5 【答案】D【解析】解:如图,M=(x,y)|y=2x,N=(x,y)|y=a,若MN=,则a0实数a的取值范围为(,0故选:D【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题6 【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4的值域为(,4)(4,+),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档7 【答案】D【解析】解:(x2)3+2x+sin(x2)=2,(x2)3+2(x2)+sin(x2)=24=2,(y2)3+2y+sin(y2)=6,(y2)3+2(y2)+sin(y2)=64=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f(t)=3t2+2+cost0,即函数f(t)单调递增由题意可知f(x2)=2,f(y2)=2,即f(x2)+f(y2)=22=0,即f(x2)=f(y2)=f(2y),函数f(t)单调递增x2=2y,即x+y=4,故选:D【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质8 【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 9 【答案】D【解析】解:由已知,|+2|2=12,即,所以|2+4|+4=12,所以|=2;故选D【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方10【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,=0,M点的轨迹是以原点O为圆心,半焦距c为半径的圆又M点总在椭圆内部,该圆内含于椭圆,即cb,c2b2=a2c2e2=,0e故选:C【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答11【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点(,),所以3.5=0.74.5+a,解得a=0.35故选A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键12【答案】C【解析】解:令F(x)=,(x0),则F(x)=,f(x)xf(x),F(x)0,F(x)为定义域上的减函数,由不等式x2f()f(x)0,得:,x,x1,故选:C二、填空题13【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.114【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题15【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201616【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案17【答案】【解析】试题分析:依题意得.考点:抽象函数定义域18【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n1三、解答题19【答案】 【解析】解:若p为真,则0a1;若q为真,则=4a210,得,又a0,a1,因为pq为假命题,pq为真命题,所以p,q中必有一个为真,且另一个为假当p为真,q为假时,由;当p为假,q为真时,无解 综上,a的取值范围是【点评】1求解本题时,应注意大前提“a0,a1”,a的取值范围是在此条件下进行的20【答案】(1);(2)至少经过0.6小时才能回到教室。【解析】试题分析:(1)由题意:当时,y与t成正比,观察图象过点,所以可以求出解析式为,当时,y与t的函数关系为,观察图象过点,代入得:,所以,则解析式为,所以含药量y与t的函数关系为:;(2)观察图象可知,药物含量在段时间内逐渐递增,在时刻达到最大值1毫克,在时刻后,药物含量开始逐渐减少,当药物含量到0.25毫克时,有,所以,所以,所以至少要经过0.6小时,才能回到教室。试题解析:(1)依题意,当,可设y与t的函数关系式为ykt,易求得k10, y10t, 含药量y与时间t的函数关系式为(2)由图像可知y与t的关系是先增后减的,在时,y从0增加到1; 然后时,y从1开始递减。 ,解得t0.6, 至少经过0.6小时,学生才能回到教室 考点:1.分段函数;2.指数函数;3.函数的实际应用。21【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题. 22【答案】 【解析】证明:(1)在PAD中,因为E,F分别为AP,AD的中点,所以EFPD又因为EF不在平面PCD中,PD平面PCD所以直线EF平面PCD(2)连接BD因为AB=AD,BAD=60所以ABD为正三角形因为F是AD的中点,所以BFAD因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,所以BF平面PAD又因为BF平面EBF,所以平面BEF平面PAD【点评】本题是中档题,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程设计优化及技术咨询服务合同
- 观革命电影有感450字14篇
- 直接引语和间接引语的转换技巧:初中英语课程教案
- 纪检委员培训课件
- 人教版八年级英语上册Unit 5完形填空专题复习练习题(含答案解析)
- 唐诗三百首鉴赏与实践教学方案
- 工业园区招商合同
- 早教课件在家听
- 企业间知识产权保护与交易合作合同
- 纪念塔课件教学课件
- GB/T 242-2007金属管扩口试验方法
- 政治理论水平任职资格考试题库
- Unit 2 Lets celebrate Developing ideas-Writing a letter to express 课件【知识精讲+拓展训练】高中英语外研版(2019)必修第二册
- 路基压实度汇总表
- 【食品生产加工技术】香肠的加工技术
- 图标设计与制作PPT完整全套教学课件
- 贫困户访谈记录
- 道路喷雾降尘方案
- 唐恬人世间的孤勇者与追光者
- 数学基础模块上册课件
- 智慧羊场建设方案 智慧养殖监管系统解决方案
评论
0/150
提交评论