兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 ,则( )A B C D2 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值3 在数列中,则该数列中相邻两项的乘积为负数的项是( )A和 B和 C和 D和4 设集合,集合,若 ,则的取值范围( )A B C. D5 命题“设a、b、cR,若ac2bc2则ab”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A0B1C2D36 某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )种.A B C D【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力7 在中,若,则( )A B C. D8 已知等差数列an中,a6+a8=16,a4=1,则a10的值是( )A15B30C31D649 利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k5.024,那么就有把握认为“X和Y有关系”的百分比为( )P(K2k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A25%B75%C2.5%D97.5%10直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在11在等差数列中,首项公差,若,则 A、B、 C、D、12设,为正实数,则=( )A. B. C. D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=14如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是15设变量x,y满足约束条件,则的最小值为16已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=17已知线性回归方程=9,则b=18命题p:xR,函数的否定为三、解答题19A1B1C1DD1CBAEF(本题满分12分)如图所示,在正方体ABCDA1B1C1D1中, E、F分别是棱DD1 、C1D1的中点. (1)求直线BE和平面ABB1A1所成角的正弦值; (2)证明:B1F平面A1BE20在平面直角坐标系中,ABC各顶点的坐标分别为:A(0,4);B(3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程21如图,已知几何体的底面ABCD 为正方形,ACBD=N,PD平面ABCD,PD=AD=2EC,ECPD()求异面直线BD与AE所成角:()求证:BE平面PAD;()判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由22已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间23已知抛物线C:x2=2y的焦点为F()设抛物线上任一点P(m,n)求证:以P为切点与抛物线相切的方程是mx=y+n;()若过动点M(x0,0)(x00)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明24已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体()求几何体的表面积()判断在圆A上是否存在点M,使二面角MBCD的大小为45,且CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由兰溪市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:,由于为增函数,所以.应为为增函数,所以,故.考点:比较大小2 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B3 【答案】C【解析】考点:等差数列的通项公式4 【答案】A【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键.5 【答案】C【解析】解:命题“设a、b、cR,若ac2bc2,则c20,则ab”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、cR,若ab,则ac2bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键6 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有种. 孪生姐妹不乘坐甲车,则有种. 共有24种. 选A.7 【答案】B【解析】考点:正弦定理的应用.8 【答案】A【解析】解:等差数列an,a6+a8=a4+a10,即16=1+a10,a10=15,故选:A9 【答案】D【解析】解:k5、024,而在观测值表中对应于5.024的是0.025,有10.025=97.5%的把握认为“X和Y有关系”,故选D【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目10【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C11【答案】A【解析】, 12【答案】B.【解析】,故,而事实上,故选B.二、填空题13【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题14【答案】 【解析】解:由题意图形折叠为三棱锥,底面为EFC,高为AC,所以三棱柱的体积:112=,故答案为:【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力15【答案】4 【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键16【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题17【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题18【答案】x0R,函数f(x0)=2cos2x0+sin2x03 【解析】解:全称命题的否定是特称命题,即为x0R,函数f(x0)=2cos2x0+sin2x03,故答案为:x0R,函数f(x0)=2cos2x0+sin2x03,三、解答题19【答案】解:(1)设G是AA1的中点,连接GE,BGE为DD1的中点,ABCDA1B1C1D1为正方体,GEAD,又AD平面ABB1A1,GE平面ABB1A1,且斜线BE在平面ABB1A1内的射影为BG,RtBEG中的EBG是直线BE和平面ABB1A1所成角,即EBG=设正方体的棱长为,直线BE和平面ABB1A1所成角的正弦值为:;6分(2)证明:连接EF、AB1、C1D,记AB1与A1B的交点为H,连接EHH为AB1的中点,且B1H=C1D,B1HC1D,而EF=C1D,EFC1D,B1HEF且B1H=EF,四边形B1FEH为平行四边形,即B1FEH,又B1F平面A1BE且EH平面A1BE,B1F平面A1BE 12分20【答案】 【解析】解(1),根据直线的斜截式方程,直线AB:,化成一般式为:4x3y+12=0,根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y7=0,AB边的高所在直线的方程为3x+4y7=021【答案】【解析】解:()PD平面ABCD,ECPD,EC平面ABCD,又BD平面ABCD,ECBD,底面ABCD为正方形,ACBD=N,ACBD,又ACEC=C,AC,EC平面AEC,BD平面AEC,BDAE,异面直线BD与AE所成角的为90()底面ABCD为正方形,BCAD,BC平面PAD,AD平面PAD,BC平面PAD,ECPD,EC平面PAD,PD平面PAD,EC平面PAD,ECBC=C,EC平面BCE,BC平面BCE,平面BCE平面PAD,BE平面BCE,BE平面PAD() 假设平面PAD与平面PAE垂直,作PA中点F,连结DF,PD平面ABCD,AD CD平面ABCD,PDCD,PDAD,PD=AD,F是PA的中点,DFPA,PDF=45,平面PAD平面PAE,平面PAD平面PAE=PA,DF平面PAD,DF平面PAE,DFPE,PDCD,且正方形ABCD中,ADCD,PDAD=D,CD平面PAD又DF平面PAD,DFCD,PD=2EC,ECPD,PE与CD相交,DF平面PDCE,DFPD,这与PDF=45矛盾,假设不成立即平面PAD与平面PAE不垂直【点评】本题主要考查了线面平行和线面垂直的判定定理的运用考查了学生推理能力和空间思维能力22【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档23【答案】 【解析】证明:()由抛物线C:x2=2y得,y=x2,则y=x,在点P(m,n)切线的斜率k=m,切线方程是yn=m(xm),即yn=mxm2,又点P(m,n)是抛物线上一点,m2=2n,切线方程是mx2n=yn,即mx=y+n ()直线MF与直线l位置关系是垂直由()得,设切点为P(m,n),则切线l方程为mx=y+n,切线l的斜率k=m,点M(,0),又点F(0,),此时,kMF= kkMF=m()=1,直线MF直线l 【点评】本题考查直线与抛物线的位置关系,导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论