




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长顺县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若是两条不同的直线,是三个不同的平面,则下列为真命题的是( )A若,则B若,则C若,则D若,则2 函数y=ecosx(x)的大致图象为( )ABCD3 若直线y=kxk交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( )A12B10C8D64 已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能5 如果执行如图所示的程序框图,那么输出的a=( )A2BC1D以上都不正确6 已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为( )AiBiC1D17 如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D8 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心9 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca10下列各组函数为同一函数的是( )Af(x)=1;g(x)=Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)=Df(x)=;g(x)=11一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )(A) ( B ) (C) (D) 12下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)二、填空题13在ABC中,角A,B,C所对的边分别为a,b,c,若ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)tanAtanBtanC=tanA+tanB+tanCtanA+tanB+tanC的最小值为3tanA,tanB,tanC中存在两个数互为倒数若tanA:tanB:tanC=1:2:3,则A=45当tanB1=时,则sin2CsinAsinB14函数在区间上递减,则实数的取值范围是 15如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为16已知关于的不等式的解集为,则关于的不等式的解集为_.17设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件18若直线:与直线:垂直,则 .三、解答题19在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。20已知函数f(x)=,求不等式f(x)4的解集21已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b()求该椭圆的离心率;()已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于APQ,求该椭圆的方程22已知等差数列an满足a1+a2=3,a4a3=1设等比数列bn且b2=a4,b3=a8()求数列an,bn的通项公式;()设cn=an+bn,求数列cn前n项的和Sn23设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 24已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行(1)求函数的单调区间;(2)若x1,3时,f(x)14c2恒成立,求实数c的取值范围 长顺县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确故选C考点:空间直线、平面间的位置关系2 【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力3 【答案】C【解析】解:直线y=kxk恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1) B(x2,y2) 抛物y2=4x的线准线x=1,线段AB中点到y轴的距离为3,x1+x2=6,|AB|=|AF|+|BF|=x1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离4 【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直5 【答案】 B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n2016,执行循环体,a=1,n=5满足条件n2016,执行循环体,a=2,n=7满足条件n2016,执行循环体,a=,n=9由于2015=3671+2,可得:n=2015,满足条件n2016,执行循环体,a=,n=2017不满足条件n2016,退出循环,输出a的值为故选:B6 【答案】D【解析】解:由zi=1+i,得,z的虚部为1故选:D【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题7 【答案】C【解析】考点:平面图形的直观图.8 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D9 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题10【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为x|x1,函数g(x)的定义域为x|x1或x1,定义域不同,故不是相同函数综上可得,C项正确故选:C11【答案】A【解析】 根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于12【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D二、填空题13【答案】 【解析】解:由题意知:A,B,C,且A+B+C=tan(A+B)=tan(C)=tanC,又tan(A+B)=,tanA+tanB=tan(A+B)(1tanAtanB)=tanC(1tanAtanB)=tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故正确;当A=,B=C=时,tanA+tanB+tanC=3,故错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故错误;由,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45,故正确;当tanB1=时, tanAtanB=tanA+tanB+tanC,即tanC=,C=60,此时sin2C=,sinAsinB=sinAsin(120A)=sinA(cosA+sinA)=sinAcosA+sin2A=sin2A+cos2A=sin(2A30),则sin2CsinAsinB故正确;故答案为:【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档14【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质15【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高16【答案】【解析】考点:一元二次不等式的解法.17【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分18【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.1三、解答题19【答案】(1)点P在直线上(2)【解析】(1)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为,20【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)21【答案】 【解析】解:()设F(c,0),M(c,y1),N(c,y2),则,得y1=,y2=,MN=|y1y2|=b,得a=2b,椭圆的离心率为: =()由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kxy+b=0,由于圆x2+y2=4内切于APQ,所以r=2=,得k=(b2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,yQ=yP=2,不妨设点Q在y轴左侧,可得xQ=xP=2,则=,解得b=3,则a=6,椭圆方程为:【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质22【答案】 【解析】解:(1)设等差数列an的公差为d,则由,可得,解得:,由等差数列通项公式可知:an=a1+(n1)d=n,数列an的通项公式an=n,a4=4,a8=8设等比数列bn的公比为q,则,解得,;(2),=,=,数列cn前n项的和Sn=23【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键24【答案】 【解析】解:(1)由题意:f(x)=3x2+6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/GDACERCU 0009-2020废旧动力蓄电池回收制取电池级硫酸镍绿色工艺规范
- 高中化学说课课件教学
- 高中化学冶金课件
- 2025学年四川省高三语文秋季入学摸底考试卷附答案解析
- 半导体行业市场前景及投资研究报告:走向更高端国产掩膜版厂商2.0时代
- 高一化学钠课件
- 砂石场物流管理人员劳动合同及供应链管理协议
- 景观园林住宅区物业合同终止及园林景观维护协议
- 体育休闲公园空地租赁及赛事运营管理合同
- 离婚协议书范本:共同债务处理明确责任归属
- 全套55讲-鱼C论坛小甲鱼Python课后题-20211129034856
- 10 巴黎奥运-2025年中考英语新热点时文阅读
- 2024-2030年中国过敏性鼻炎药物行业市场发展趋势与前景展望战略分析报告
- 浙江省温州市“摇篮杯”2022-2023学年高一下学期化学竞赛试卷 含解析
- 24年追觅在线测评28题及答案
- 智能建造施工技术 课件 项目1 智能建造施工概论;项目2 土方工程;项目3 基础工程
- 部编版二年级语文上册《植物妈妈有办法》教学课件2篇21
- 情侣解除关系的协议书
- 精神卫生防治业务技能竞赛理论试题及答案
- 中译版 欧洲规范8 结构抗震设计 第二部分 桥梁
- 幼儿园大班语言《鹅大哥出门》课件
评论
0/150
提交评论