




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷鄯善县二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11112 已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 4 已知A,B是以O为圆心的单位圆上的动点,且|=,则=( )A1B1CD5 函数y=(x25x+6)的单调减区间为( )A(,+)B(3,+)C(,)D(,2)6 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D7 复数Z=(i为虚数单位)在复平面内对应点的坐标是( )A(1,3)B(1,3)C(3,1)D(2,4) 8 函数是周期为4的奇函数,且在上的解析式为,则( )A B C D【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力9 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A =1.23x+4B =1.23x0.08C =1.23x+0.8D =1.23x+0.0810下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)11若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D1212学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种二、填空题13函数在区间上递减,则实数的取值范围是 14复数z=(i虚数单位)在复平面上对应的点到原点的距离为15已知,不等式恒成立,则的取值范围为_.16直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_。17棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 18曲线y=x+ex在点A(0,1)处的切线方程是三、解答题19 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.20如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围21已知曲线C的极坐标方程为42cos2+92sin2=36,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系;()求曲线C的直角坐标方程;()若P(x,y)是曲线C上的一个动点,求3x+4y的最大值22函数f(x)=sin2x+sinxcosx(1)求函数f(x)的递增区间;(2)当x0,时,求f(x)的值域23已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn24一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设BOC=,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2)()分别求V与S关于的函数表达式;()求侧面积S的最大值;()求的值,使体积V最大鄯善县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 2 【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立3 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础4 【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且|=,即有|2+|2=|2,可得OAB为等腰直角三角形,则,的夹角为45,即有=|cos45=1=1故选:B【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键5 【答案】B【解析】解:令t=x25x+6=(x2)(x3)0,可得 x2,或 x3,故函数y=(x25x+6)的定义域为(,2)(3,+)本题即求函数t在定义域(,2)(3,+)上的增区间结合二次函数的性质可得,函数t在(,2)(3,+)上的增区间为 (3,+),故选B6 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.7 【答案】A【解析】解:复数Z=(1+2i)(1i)=3+i在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题8 【答案】C9 【答案】D【解析】解:设回归直线方程为=1.23x+a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为=1.23x+0.08故选D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题10【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D11【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力12【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想二、填空题13【答案】【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以.考点:二次函数图象与性质14【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力15【答案】【解析】试题分析:把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可,设关于的函数对任意的,当时,即,解得;当时,即,解得,的取值范围是;故答案为:考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题把原不等式看成是关于的一次不等式,在时恒成立,只要满足在时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.16【答案】【解析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA=,圆的半径为r=,sin=,cos=,tan=,tan2=,故答案为:。17【答案】【解析】考点:球的体积与表面积【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键18【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题三、解答题19【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为平面,所以平面的一个法向量.由知为的三等分点且此时.在平面中,.所以平面的一个法向量.10分所以,又因为二面角的大小为锐角,所以该二面角的余弦值为.12分20【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8p,|MF|=x1+,|NF|=x2+,|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12y22=4(x1x2)kMN=,直线MN的方程为yt=(x3),B的横坐标为x=3,直线MN代入y2=4x,可得y22ty+2t212=00可得0t212,x=3(3,3),点B横坐标的取值范围是(3,3)【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题21【答案】 【解析】解:()由42cos2+92sin2=36得4x2+9y2=36,化为;()设P(3cos,2sin),则3x+4y=,R,当sin(+)=1时,3x+4y的最大值为【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:(1)(2分)令解得f(x)的递增区间为(6分)(2),(8分),(10分)f(x)的值域是(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力23【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题24【答案】 【解析】解:()木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cos)=20(cos+2sin+1),(0,),梯形ABCD的面积SABCD=sin=sincos+sin,(0,),体积V()=10(sincos+si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保项目借款合同示例
- 外研版八年级上英语教学计划优化建议
- 小学语文组教学活动计划
- 一年级科学教育目标与教学计划
- 护理伦理与法律培训计划及其重要性
- 部编版人教版一年级语文下册教案计划
- 书法课程创新教学方法计划
- 2025-2030中国渔夫帽行业市场发展分析及投资前景预测研究报告
- 2025-2030中国啫喱水行业市场发展分析及竞争策略与投资前景研究报告
- 2025-2030中国儿童酱油行业市场发展状况及发展趋势与投资前景研究报告
- 骨科优势病种中医诊疗方案
- 部编版五年级下册语文习作《习作他-了》写作指导+范文+点评
- 血站面试考试试题及答案
- 自动化测试知到课后答案智慧树章节测试答案2025年春武汉城市职业学院
- 专题17交变电流(原卷版)-2025年高考物理二轮复习培优练(新高考用)
- 《新能源材料概论》 课件 第5章 储能材料
- 光伏发电设备检修维护(技师)职业技能鉴定备考试题库(含答案)
- 2025年临床带教老师心得感想(7篇)
- 线控转向电机控制策略设计与仿真研究
- 课题申报参考:数智时代大学生网络社会心态形成发展规律及引导策略研究
- FIDIC标准合同范本
评论
0/150
提交评论