三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=lnx(1xe2) 的值域是( )A0,2B2,0C,0D0,2 若函数是偶函数,则函数的图象的对称轴方程是( )111.ComA B C D3 已知向量|=, =10,|+|=5,则|=( )ABC5D254 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错5 椭圆=1的离心率为( )ABCD6 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D07 已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(xm)(m0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,则m的最小值为( )A1BCe1De+18 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3B2:3:4C3:2:4D3:1:29 函数是周期为4的奇函数,且在上的解析式为,则( )A B C D【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力10与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条11已知函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数若数列an是公差不为0的等差数列,且f(a6)=f(a23),则an的前28项之和S28=( )A7B14C28D5612下列图象中,不能作为函数y=f(x)的图象的是( )ABCD二、填空题13设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是14已知随机变量N(2,2),若P(4)=0.4,则P(0)=15球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为16曲线在点(3,3)处的切线与轴x的交点的坐标为17一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_18已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个三、解答题19已知不等式ax23x+64的解集为x|x1或xb,(1)求a,b;(2)解不等式ax2(ac+b)x+bc020已知数列an满足a1=,an+1=an+,数列bn满足bn=()证明:bn(0,1)()证明: =()证明:对任意正整数n有an 212016年1月1日起全国统一实施全面两孩政策为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30154580后451055合计7525100()以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;()根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由参考数据:P(K2k)50.0250.0100.005k2.0722.7063.8415.0246.6357.879(参考公式:,其中n=a+b+c+d)22(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程23已知f(x)=x23ax+2a2(1)若实数a=1时,求不等式f(x)0的解集;(2)求不等式f(x)0的解集24如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围三水区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:函数y=lnx在(0,+)上为增函数,故函数y=lnx在(0,+)上为减函数,当1xe2时,若x=1,函数取最大值0,x=e2,函数取最小值2,故函数y=lnx(1xe2) 的值域是2,0,故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键2 【答案】A【解析】试题分析:函数向右平移个单位得出的图象,又是偶函数,对称轴方程为,的对称轴方程为.故选A考点:函数的对称性.3 【答案】C【解析】解:;由得, =;故选:C4 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念5 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c=2;则椭圆的离心率为e=,故选D【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分6 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题7 【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|e恒成立,可得: =1+ln(x2m),x2x1e,01+ln(x2m),lnxx1(x1),考虑x2m1时1+ln(x2m)x2m,令x2m,化为mxexe,xm+令f(x)=xexe,则f(x)=1exe,可得x=e时,f(x)取得最大值me1故选:C8 【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2R3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2R3: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键9 【答案】C10【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C11【答案】C【解析】解:函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数函数f(x)关于直线x=1对称,数列an是公差不为0的等差数列,且f(a6)=f(a23),a6+a23=2则an的前28项之和S28=14(a6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题12【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性二、填空题13【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题14【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题15【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力16【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题17【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:18【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题三、解答题19【答案】 【解析】解:(1)因为不等式ax23x+64的解集为x|x1或xb,所以x1=1与x2=b是方程ax23x+2=0的两个实数根,且b1由根与系的关系得,解得,所以得(2)由于a=1且 b=2,所以不等式ax2(ac+b)x+bc0,即x2(2+c)x+2c0,即(x2)(xc)0当c2时,不等式(x2)(xc)0的解集为x|2xc;当c2时,不等式(x2)(xc)0的解集为x|cx2;当c=2时,不等式(x2)(xc)0的解集为综上所述:当c2时,不等式ax2(ac+b)x+bc0的解集为x|2xc;当c2时,不等式ax2(ac+b)x+bc0的解集为x|cx2;当c=2时,不等式ax2(ac+b)x+bc0的解集为【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题20【答案】 【解析】证明:()由bn=,且an+1=an+,得,下面用数学归纳法证明:0bn1由a1=(0,1),知0b11,假设0bk1,则,0bk1,则0bk+11综上,当nN*时,bn(0,1);()由,可得,=故;()由()得:,故由知,当n2时,=【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题21【答案】 【解析】解:()由已知得该市70后“生二胎”的概率为=,且XB(3,),P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,其分布列如下:X0123P(每算对一个结果给1分)E(X)=3=2()假设生二胎与年龄无关,K2=3.0302.706,所以有90%以上的把握认为“生二胎与年龄有关”22【答案】 【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为=1(0),由题意可得c2=4|+9|=13,解得=1即有双曲线的方程为=1或=123【答案】 【解析】解:(1)当a=1时,依题意得x23x+20因式分解为:(x2)(x1)0,解得:x1或x21x2不等式的解集为x|1x2(2)依题意得x23ax+2a20(xa)(x2a)0对应方程(xa)(x2a)=0得x1=a,x2=2a当a=0时,x当a0时,a2a,ax2a;当a0时,a2a,2axa;综上所述,当a=0时,原不等式的解集为;当a0时,原不等式的解集为x|ax2a;当a0时,原不等式的解集为x|2axa;24【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论