万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若关于的不等式的解集为或,则的取值为( )A B C D2 已知某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定3 下列函数中,既是奇函数又是减函数的为( )Ay=x+1By=x2CDy=x|x|4 i是虚数单位,i2015等于( )A1B1CiDi5 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种6 阅读如下所示的程序框图,若运行相应的程序,则输出的的值是( )A39 B21 C81 D1027 设Sn为等比数列an的前n项和,已知3S3=a42,3S2=a32,则公比q=( )A3B4C5D68 设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D49 已知函数y=x3+ax2+(a+6)x1有极大值和极小值,则a的取值范围是( )A1a2B3a6Ca3或a6Da1或a210已知全集U=0,1,2,3,4,集合A=0,1,3,B=0,1,4,则(UA)B为( )A0,1,2,4B0,1,3,4C2,4D411在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D012设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D37二、填空题13在(2x+)6的二项式中,常数项等于(结果用数值表示)14定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .15(sinx+1)dx的值为16如果直线3ax+y1=0与直线(12a)x+ay+1=0平行那么a等于17如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成18在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为三、解答题19已知函数f(x)=ax3+2xa,()求函数f(x)的单调递增区间;()若a=n且nN*,设xn是函数fn(x)=nx3+2xn的零点(i)证明:n2时存在唯一xn且;(i i)若bn=(1xn)(1xn+1),记Sn=b1+b2+bn,证明:Sn1 20设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率21在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系已知直线l过点P(1,0),斜率为,曲线C:=cos2+8cos()写出直线l的一个参数方程及曲线C的直角坐标方程;()若直线l与曲线C交于A,B两点,求|PA|PB|的值 22数列中,且满足.(1)求数列的通项公式;(2)设,求.23(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值24在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标万源市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.2 【答案】C【解析】解:某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),1=90,1=86,2=93,2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础3 【答案】D【解析】解:y=x+1不是奇函数;y=x2不是奇函数;是奇函数,但不是减函数;y=x|x|既是奇函数又是减函数,故选:D【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题4 【答案】D【解析】解:i2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础5 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想6 【答案】D111.Com【解析】试题分析:第一次循环:;第二次循环:;第三次循环:结束循环,输出故选D. 1考点:算法初步7 【答案】B【解析】解:Sn为等比数列an的前n项和,3S3=a42,3S2=a32,两式相减得3a3=a4a3,a4=4a3,公比q=4故选:B8 【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题9 【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x1,有f(x)=3x2+2ax+(a+6)若f(x)有极大值和极小值,则=4a212(a+6)0,从而有a6或a3,故选:C【点评】本题主要考查函数在某点取得极值的条件属基础题10【答案】A【解析】解:U=0,1,2,3,4,集合A=0,1,3,CUA=2,4,B=0,1,4,(CUA)B=0,1,2,4故选:A【点评】本题考查集合的交、交、补集的混合运算,是基础题解题时要认真审题,仔细解答11【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题12【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题二、填空题13【答案】240 【解析】解:由(2x+)6,得=由63r=0,得r=2常数项等于故答案为:24014【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.115【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:216【答案】 【解析】解:直线3ax+y1=0与直线(12a)x+ay+1=0平行,3aa=1(12a),解得a=1或a=,经检验当a=1时,两直线重合,应舍去故答案为:【点评】本题考查直线的一般式方程和平行关系,属基础题17【答案】4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成故答案为:418【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题三、解答题19【答案】 【解析】解:()f(x)=3ax2+2,若a0,则f(x)0,函数f(x)在R上单调递增;若a0,令f(x)0,或,函数f(x)的单调递增区间为和;()(i)由()得,fn(x)=nx3+2xn在R上单调递增,又fn(1)=n+2n=20,fn()=当n2时,g(n)=n2n10,n2时存在唯一xn且(i i)当n2时,(零点的区间判定),(数列裂项求和),又f1(x)=x3+2x1,(函数法定界),又,(不等式放缩技巧)命题得证【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题 20【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共9种4(分)设“点P在第二象限”为事件A,事件A有(2,1),(1,1)共2种则P(A)=6(分)(2)设“点P在第三象限”为事件B,则事件B满足8(分),作出不等式组对应的平面区域如图:则P(B)=12(分)21【答案】 【解析】解:()直线l过点P(1,0),斜率为,直线l的一个参数方程为(t为参数);=cos2+8cos,(1cos2)=8cos,即得(sin)2=4cos,y2=4x,曲线C的直角坐标方程为y2=4x() 把代入y2=4x整理得:3t28t16=0,设点A,B对应的参数分别为t1,t2,则,【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题 22【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和23【答案】(1)(为参数);(2).【解析】试题解析:(1)将曲线(为参数),化为,由伸缩变换化为,代入圆的方程,得到,可得参数方程为;考点:坐标系与参数方程24【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论