




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
方程、不等式复习专题 一、考法、考点分析1、 考法分析:方程与不等式的综合应用是中考数学重点考查的内容之一,新课程在数与代数领域的一个亮点就是加强了知识之间的内在联系的研究,方程与不等式是紧密联系的数学知识,复习时,要站在知识整体的高度把握方程式和不等式的知识内容。2、 考点课标要求:(1)根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。(2)经历用观察、画图或计算器等手段估计方程解的过程。(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。(5)能根据具体问题的实际意义,检验结果是否正确。(6) 一元一次不等式(组)的有关概念、解法和应用,题型多以填空、选择为主,难度不大,另外关于列一元一次不等式(组)解决实际问题的考题在中考中出现的几率也较大重点、难点、疑点1.方程的概念;方程的解法;列方程解应用题的一般步骤:审:审清题意;设:设未知数;找:找出相等关系;列:列出方程;解:解这个分式方程;验:检验,既要验证根是否是原分式方程的根,又要验是否符合题意;答:写出答案2不等式(组)的有关概念;不等式(组)的解法;解(解集)的表示;列不等式(不等式组)解应用题:审:审清题意;设:设未知数;找:找出不等关系;列:列出不等式(组);解:解不等式(组); 答:写出答案二、知识点归(1)方程:含有未知数的等式叫方程。(2)一元一次方程:含有一个未知数,且未知项的次数为1,这样的方程叫一元一次方程。(3)二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程,理解时应注意:二元一次方程左右两边的代数式必须是整式,例如等,都不是二元一次方程;二元一次方程必须含有两个未知数;二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数,如xy=2不是二元一次方程。x=ay=b(4)二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解,通常用 的形式表示,在任何一个二元一次方程中,如果把其中的一个未知数任取一个数,都可以通过方程求得与之对应的另一个未知数的值。因此,任何一个二元一次方程都有无数解。2x-y=1x+y=23x-y=5x=2x+2y=33x-y=12x+4y=6x=2(5)二元一次方程组:由两个或两个以上的整式方程(即方程两边的代数式都是整式)组成,常用“ ”把这些方程联合在一起; 整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量;方程组中每个方程经过整理后都是一次方程,如: 等都是二元一次方程组。(6)二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。(7)会检验一对数值是不是一个二元一次方程组的解检验方法:把一对数值分别代入方程组的、两个方程,如果这对未知数既满足方程,又满足方程,则它就是此方程组的解。(8) 二元一次方程组的解法:解题思想:将二元变成一元;代入消元法加减消元法 2、不等式具体知识点(1)不等式:用不等号表示不相等关系的式子(2)不等式的解:能使不等式成立的未知数的值(3)不等式的解集:一个不等式所有解的集合(4)解不等式:求出不等式解集的过程(5)一元一次不等式:只含有一个未知数且未知数的次数是1的不等式叫一元一次不等式(其标准形式为ax-b0或ax-b0,(a0)(6)一元一次不等式组:两个或两个以上含有相同未知数的一元一次不等式所组成的一组不等式,称为一元一次不等式组(7)不等式组的解集:组成不等式组的各个不等式的解集的公共部分,叫这个不等式组的解集(8)解不等式组:求出不等式组解集的过程(9)不等式组解集的取法:大大取大,小小取小,一大一小取公共部分.三、典例解析例1解方程:(1) 2x(x+3)=-x+3 (2)+=2 (3)(x+15)=-(x-7)解:(1)2x(x+3)= -x+3去分母,得x-2(x+3)= -3x+9 -等式性质,两边同时乘3去括号,得 6x-2x-6= -3x +9 -去括号法则移项, 得 6x-2x +3x=9+6 -等式性质,两边同时加上6、3x合并同类项,得7x=15 -合并同类项法则未知数系数化为1,得x= -两边同时除以7【点评】解一元一次方程作为基本技能要熟练掌握,同时还要注意对解方程各个步骤地灵活处理。例2解方程:(1)2%x-5+5%x=20%, (2) 解:(1)去分母,得2x-500+5x=20移项并整理,得7x=520,系数化为1,得x(2)由分数基本性质,得,去分母,得5(10x-10)-3(10x+20)=30,去括号,得50x-50-30x-60=30,移项并整理,得20x140,系数化为1,得x7.【点评】学生的代数运算能力的形成不是一蹴而就的,需要不断地训练,应充分地利用解方程这一训练和提高学生代数运算能力的极好载体,例3:判断下列方程是不是二元一次方程 分析:判断一个方程是否是二元一次方程需满足以下几条要求含有两个未知数,未知项的次数是“1”,任何一个二元一次方程都可以化成 ,( 为已知数)的形式,这种形式叫做二元一次方程的一般形式.也就是说任何一个方程只要能化成 ( ).这个方程就是二元一次方程.解:(1)不是,未知项次数为2;(2)是,经过化简为 ,符合一般形式,是;(3)不是,xy的次数是2;(4)是,经过化简为xy0,即符合定义,又能化为一般形式;(5)不是,含有三个未知数,同时未知项 次数为2;(6)不是,不是整式,像这样分母中含有未知数的方程都不属于二元一次方程;例4:解方程组分析:方程可以把y看作2+x,则方程中的y就可以和2+x来代替,这样方程就可以转化为一元一次方程解:把代入得 2x+2+x=6 3x=4 把代入得,。例5:甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每15秒钟相遇一次,当两车同向运动时,每1分钟相遇一次,求两车的速度。分析:在环路问题中,若两人同时同地出发,同向而行,当第一次相遇时,两人所走路程差为一周长;相向而行,第一次相遇时,两人所走路程和为一周长。解:设甲、乙两车的速度分别为每秒 x米和每秒y米,根据题意,得 经检验,符合题意。答:甲、乙两车的速度分别为25米/秒,15米/秒。例6:张华到银行以两种形式分别存了2000元和1000元,一年后全部取出,扣除利息所得税后可得到利息43.92元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:利息所得税=利息全额20%)。分析:利率问题:利息=本金利率时间。解:设2000元、1000元的年利率分别为x%和y%,则根据题意,得方程组。解方程组,x=2.25,y=0.99,答:两种储蓄的年利润分别为2.25%和0.99%。例7、某家具厂生产一种方桌,设计时1立方米的木材可做50个桌面,或300条桌腿,现有10立方米的木材,怎样分配生产桌面在和桌腿使用的木材,使桌面、桌腿刚好配套,并指出共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)。分析:解有关配套问题,要根据配套的比例,依据特定的数量关系列方程(组)求解。解:设用x立方米的木材做桌面,y立方米的木材做桌腿,根据题意, 经检验符合题意,此时,可做方桌为506=300(张)。例8在CBA篮球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,八一篮球队参加了12场比赛,共得22分,已知八一篮球队只输了2场,那么此队胜几场?平几场?分析:找出以下等量关系:这支球队胜的场数+这支球队平的场数+这支球队负的场数12,这支球队得3分的总数+这支球队得1分的总数+这支球队得0分的总数22解:设八一篮球队胜x场,平y场,依题意,得解这个方程组,得答:八一篮球队胜了6场,平了4场.【点评】这是用二元一次方程组模型解数学应用题的一个例子,可见要让学生充分体验,积累丰富的数学活动经验,不断提高“建模”的能力。例9(2006年芜湖市)已知ab0,则下列不等式不一定成立的是( )A、abb2 B、a+cb+c C、 bc析解:本题主要考查不等式的基本性质,由已知易得B例10(2006年日照市)已知方程组的解x、y满足2x+y0,则m的取值范围是( ) (A)m-(B)m(C)m1(D)-m1析解:本题先通过解方程组,解出x,y的值,再代入不等式2x+y0中,从而求出m的取值范围,应选A例11(2006年东营市)解不等式组,并把其解集在数轴上表示出来:析解:本题主要考查解不等式组以及解集如何在数轴上表示的问题解不等式x,得x3,解不等式,得x2 所以,原不等式组的解集是2x3 01231234在数轴上表示为 4、 练习训练1.已知关于的方程的根大于0,则的取值范围是 .2.把右图折叠成正方体,如果相对面的值相等,则一组的值 是 .3.下列判断正确的是( ) A.方程的解是 B.方程的解必是方程组的解 C.可以取任意数,都是方程的解 D.二元一次方程组一定只有一组解 4.是否存在这样的整数,使方程组的解是一对非负数?若存在,求出它的解;若不存在,请说明理由.5.(2006年北京市)解分式方程:6(2006年日照市)已知,关于x的方程,那么的值为 7(2006年长春市)A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?8(2006年长沙市)在社会主义新农村建设中,某乡镇决定对一段公路进行改造已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数9(2006年长春市)不等式组的解集是_。10(2006年湖州市)不等式的解集是( )A、x1B、x3C、1x3D、无解0121(第12题图)11(2006年泸州市)如果分式与的值相等,则的值是( )(A)9(B)7(C)5(D)312(2006年汉川市)如图,数轴上所表示的不等式组的解集是( )A、x2 B、1x2 C、1x2 D、x113(2006年武汉市)不等式组的解集在数轴上表示正确的是1012222111000111ABCD第13题图14.(2006年维坊市)不等式组的解是,那么的值等于15.有一只允许单向通过的窄道口,通常情况下,每分钟可通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后,还需7min到达学校.(1)此时,若绕道而行,要15min到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6min通过道口,问维护秩序的时间是多少?16.两辆汽车从同一地点出发,沿同一方向匀速直线行驶,每车最多只能携带24桶燃油,途中不能加油;每桶油可以使一辆汽车前进60km,两车都必须返回出发点,但可以先后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省新沂市第四中学七下数学期末检测模拟试题含解析
- 内部控制与风险评估试题及答案
- 2025届江苏省苏州市新草桥中学八下数学期末教学质量检测试题含解析
- 计算机VB考试挑战突破试题及答案
- 课题研究与教学创新计划
- 领导力发展培训的重点方向计划
- 人才发展与继任计划
- 2024年云南省水利厅下属事业单位真题
- 保密排查报告
- 客户需求分析与市场定位总结计划
- 销售商品收入
- 《做一只努力向上的蜗牛》励志教育主题班会
- 电子商务教学中的信息沟通与互动表现试题及答案
- 科研项目风险管理与防范措施
- 2025年江西省三支一扶考试真题
- 青马工程笔试题库及答案
- 乐理考试题及答案2024
- Unit1 Making friends A Let's talk(教学设计)-2024-2025学年人教PEP版英语三年级上册
- 2025年云南省文山州事业单位招聘历年自考难、易点模拟试卷(共500题附带答案详解)
- 2025届新高考物理冲刺复习:用动量定理解决带电粒子在磁场中的运动问题
- 2025年春沪科版七年级数学下册 第9章 分式 小结与复习
评论
0/150
提交评论