




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
利用空间向量证明空间中的位置关系(25分钟60分)一、选择题(每小题5分,共25分)1.(2016泉州模拟)设平面的一个法向量为n1=(1,2,-2),平面的一个法向量为n2=(-2,-4,k),若,则k=()A.2B.4C.-2D.-4【解析】选B.由知n1n2,则n2=n1.即(-2,-4,k)=(1,2,-2),即解得k=4.【加固训练】若平面,垂直,则下面可以是这两个平面的法向量的是()A.n1=(1,2,1),n2=(-3,1,1)B.n1=(1,1,2),n2=(-2,1,1)C.n1=(1,1,1),n2=(-1,2,1)D.n1=(1,2,1),n2=(0,-2,-2)【解析】选A.因为,所以n1n2,即n1n2=0,经验证可知,选项A正确.2.(2016西安模拟)若平面,的法向量分别是n1=(2,-3,5),n2=(-3,1,-4),则()A.B.C.,相交但不垂直D.以上答案均不正确【解析】选C.因为n1n2=2(-3)+(-3)1+5(-4)0.所以n1与n2不垂直,且不共线.所以与相交但不垂直.3.若=+,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面内D.平行或在平面内【解析】选D.由=+知,向量,共面,则直线AB与平面CDE的位置关系是平行或在平面内.4.(2016珠海模拟)如图所示,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则()A.EF至多与A1D,AC之一垂直B.EFA1D,EFACC.EF与BD1相交D.EF与BD1异面【解题提示】建立空间直角坐标系,用向量法求解.【解析】选B.以D点为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=,=(-1,-1,1),=-,=0,从而EFBD1,EFA1D,EFAC.故选B.5.如图,正方形ABCD与矩形ACEF所在平面互相垂直,以CD,CB,CE所在直线分别为x,y,z轴建立空间直角坐标系,AB=,AF=1,M在EF上,且AM平面BDE,则M点的坐标为()A.(1,1,1)B.C.D.【解析】选C.由已知得A(,0),B(0,0),D(,0,0),E(0,0,1),设M(x,x,1).则=(x-,x-,1),=(,-,0),=(0,-,1).设平面BDE的一个法向量为n=(a,b,c).则即解得令b=1,则n=(1,1,).又AM平面BDE,所以n=0.即2(x-)+=0,得x=,所以M.二、填空题(每小题5分,共15分)6.设点C(2a+1,a+1,2)在点P(2,0,0),A(1,-3,2),B(8,-1,4)确定的平面上,则a=.【解析】由共面向量定理知=x+y,即(2a-1,a+1,2)=x(-1,-3,2)+y(6,-1,4),即解得a=16.答案:167.(2016襄阳模拟)已知平面内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面的一个法向量n=(-1,-1,-1).则不重合的两个平面与的位置关系是.【解析】由已知得,=(0,1,-1),=(1,0,-1),设平面的一个法向量为m=(x,y,z),则得得令z=1,得m=(1,1,1).又n=(-1,-1,-1),所以m=-n,即mn,所以.答案:平行【方法技巧】平面的法向量的求法(1)设出平面的一个法向量n=(x,y,z),利用其与该平面内的两个不共线向量垂直,即数量积为0,列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零解,即得到这个法向量的坐标.(2)注意,赋值不同得到法向量的坐标也不同,法向量的坐标不唯一.8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E平面ABF,则CE与DF的和为.【解析】以D1A1,D1C1,D1D所在直线分别为x,y,z轴建立空间直角坐标系,设CE=x,DF=y,则易知E(x,1,1),B1(1,1,0),所以=(x-1,0,1),又F(0,0,1-y),B(1,1,1),所以=(1,1,y),由于ABB1E,故若B1E平面ABF,只需=(1,1,y)(x-1,0,1)=0x+y=1.答案:1三、解答题(每小题10分,共20分)9.(2016石家庄模拟)已知直三棱柱ABC-A1B1C1中,ABC为等腰直角三角形,BAC=90,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.(1)求证:DE平面ABC.(2)求证:B1F平面AEF.【证明】以A为原点,AB,AC,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,令AB=AA1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B1(4,0,4),D(2,0,2),A1(0,0,4).(1)=(-2,4,0),平面ABC的法向量为=(0,0,4),因为=0,DE平面ABC,所以DE平面ABC.(2)=(-2,2,-4),=(2,-2,-2),=(-2)2+2(-2)+(-4)(-2)=0,所以,B1FEF,=(-2)2+22+(-4)0=0,所以,所以B1FAF.因为AFEF=F,所以B1F平面AEF.【加固训练】如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=AB,B1C1BC,二面角A1-AB-C是直二面角.求证:(1)A1B1平面AA1C.(2)AB1平面A1C1C.【证明】因为二面角A1-AB-C是直二面角,四边形A1ABB1为正方形,所以AA1平面BAC.又因为AB=AC,BC=AB,所以CAB=90,即CAAB,所以AB,AC,AA1两两互相垂直.建立如图所示的空间直角坐标系,设AB=2,则A(0,0,0),B1(0,2,2),A1(0,0,2),C(2,0,0),C1(1,1,2).(1)=(0,2,0),=(0,0,-2),=(2,0,0),设平面AA1C的一个法向量n=(x,y,z),则即即取y=1,则n=(0,1,0).所以=2n,即n.所以A1B1平面AA1C.(2)易知=(0,2,2),=(1,1,0),=(2,0,-2),设平面A1C1C的一个法向量m=(x1,y1,z1),则即令x1=1,则y1=-1,z1=1,即m=(1,-1,1).所以m=01+2(-1)+21=0,所以m.又AB1平面A1C1C,所以AB1平面A1C1C.10.(2016福州模拟)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC平面AA1C1C,AB=3,BC=5.(1)求证:AA1平面ABC.(2)证明在线段BC1上存在点D,使得ADA1B,并求的值.【解析】(1)因为AA1C1C为正方形,所以AA1AC.因为平面ABC平面AA1C1C,且AA1垂直于这两个平面的交线AC.所以AA1平面ABC.(2)由(1)知AA1AB,AA1AC.由题知AB=3,BC=5,AC=4,所以ABAC.如图,以A为原点建立空间直角坐标系Axyz,则B(0,3,0),A1(0,0,4),B1(0,3,4),C1(4,0,4).设D(x,y,z)是线段BC1上的一点,且=,0,1.所以(x,y-3,z)=(4,-3,4).解得x=4,y=3-3,z=4,所以=(4,3-3,4).由=0,即9-25=0,解得=.因为0,1,所以在线段BC1上存在点D,使得ADA1B,此时,=.(20分钟40分)1.(5分)已知=(1,5,-2),=(3,1,z),若,=(x-1,y,-3),且BP平面ABC,则实数x,y,z分别为()A.,-,4B.,-,4C.,-2,4D.4,-15【解题提示】利用数量积与垂直的关系、线面垂直的性质定理即可得出.【解析】选B.因为,所以=3+5-2z=0,解得z=4.所以=(3,1,4).因为BP平面ABC,所以,.所以化为解得所以x=,y=-,z=4.2.(5分)(2016太原模拟)如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.斜交B.平行C.垂直D.不能确定【解析】选B.分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系.因为A1M=AN=a,所以M,N,所以=.又C1(0,0,0),D1(0, a,0),所以=(0, a,0),所以=0,所以.因为是平面BB1C1C的一个法向量,且MN平面BB1C1C,所以MN平面BB1C1C.3.(5分)空间中两个有一条公共边AD的正方形ABCD与ADEF,设M,N分别是BD,AE的中点,给出如下命题:ADMN;MN平面CDE;MNCE;MN,CE异面.则所有的正确命题为.【解题提示】选,为基向量,利用向量法,对四个命题逐一判断从中选择出正确命题.【解析】如图,设=a,=b,=c,则|a|=|c|且ab=cb=0.=-=(b+c)-(a+b)=(c-a),=(c-a)b=(cb-ab)=0,故ADMN,故正确;=c-a=2,故MNCE,故MN平面CDE,故正确;正确时一定不正确.答案:4.(12分)(2016汕头模拟)如图所示,在四棱锥P-ABCD中,PC平面ABCD,PC=2,在四边形ABCD中,B=C=90,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30的角.求证:(1)CM平面PAD.(2)平面PAB平面PAD.【证明】以C为坐标原点,CB为x轴,CD为y轴,CP为z轴建立如图所示的空间直角坐标系Cxyz.因为PC平面ABCD,所以PBC为PB与平面ABCD所成的角,所以PBC=30,因为PC=2,所以BC=2,PB=4,所以D(0,1,0),B(2,0,0),A(2,4,0),P(0,0,2),M,所以=(0,-1,2),=(2,3,0),=.(1)设n=(x,y,z)为平面PAD的一个法向量,所以即令y=2,得n=(-,2,1).因为n=-+20+1=0,所以n.又CM平面PAD,所以CM平面PAD.(2)如图,取AP的中点E,连接BE,则E(,2,1),=(-,2,1).因为PB=AB,所以BEPA.又因为=(-,2,1)(2,3,0)=0,所以.所以BEDA.又PADA=A,所以BE平面PAD.又因为BE平面PAB,所以平面PAB平面PAD.5.(13分)(2016郑州模拟)如图(1)所示,在RtABC中,C=90,BC=3,AC=6,D,E分别是AC,AB上的点,且DEBC,DE=2,将ADE沿DE折起到A1DE的位置,使A1CCD,如图(2)所示.(1)求证:A1C平面BCDE.(2)若M是A1D的中点,求CM与平面A1BE所成角的大小.(3)线段BC上是否存在一点P,使平面A1DP与平面A1BE垂直?说明理由.【解析】(1)因为ACBC,DEBC,所以DEAC,所以DEA1D,DECD,A1DDC=D,所以DE平面A1DC,所以DEA1C.又因为A1CCD,DECD=D,所以A1C平面BCDE.(2)如图所示,以C为坐标原点,建立空间直角坐标系Cxyz,则A1(0,0,2),D(0,2,0),M(0,1,),B(3,0,0),E(2,2,0).设平面A1BE的法向量为n=(x,y,z),则n=0,n=0.又因为=(3,0,-2),=(-1,2,0),所以令y=1,则x=2,z=,所以n=(2,1,).设CM与平面A1BE所成的角为.因为=(0,1,),所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人合伙协议书
- 2025年事业单位工勤技能-湖南-湖南工程测量员五级(初级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖南-湖南地图绘制员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北公路养护工五级(初级工)历年参考题库典型考点含答案解析
- 2025-2030中国糕点轮切割器行业应用规模及发展趋势预判报告
- 2025年事业单位工勤技能-河南-河南放射技术员一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-河北-河北殡葬服务工一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西无损探伤工一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西机械冷加工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东理疗技术员三级(高级工)历年参考题库含答案解析
- 2025玛纳斯县司法局招聘编制外专职人民调解员(5人)笔试模拟试题及答案解析
- 2025年陕西华山旅游集团有限公司招聘(50人)笔试备考试题及答案解析
- 信访业务培训课件
- 2025年秋期人教版2年级上册数学核心素养教案(第6单元)(教学反思有内容+二次备课版)
- 马拉松赛事全案策划
- 2025年国企财务招聘笔试题和答案(基础知识测试题)
- 公路工程检测员考试试题及答案
- 220KV间隔扩建(四措一案最终)
- 2025年广东华南农业大学招聘事业编制工作人员考试笔试试题(含答案)
- 2025年会计继续教育试题及答案
- 低空经济 厦门
评论
0/150
提交评论