




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是_.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是_.3.微分方程 =g( )中g(u)为u的连续函数,作变量变换_,方程可化为变量分离方程.4.微分方程F(x,y)=0中令P=y,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=(t),t为参数,则方程参数形式的通解为_.5.方程 =(x+1)3的通解为_.6.如果函数f(x,y)连续,y= (x)是方程 =f(x,y)的定义于区间x0xx0+h上, 满足初始条件 (x0)=y0的解.则y= (x)是积分方程_定义于x0xx0+h上的 连续解.7.方程 =x2+xy, 满足初始条件y(0)=0的第二次近似解是_.8.方程 +a1(t) +an-1(t) +an(t)x=0 中ai(t) i=1,2,,n是a,b上的连续函数,又x1(t),x2(t),,xn(t)为方程n个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:_.9.常系数线性方程x(4)(t)-2x(t)+x(t)=0的通解为_.10.设A(t)是区间atb上的连续nn矩阵,x1(t),x2(t),,xn(t)是方程组x=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=_的形式.11.初值问题 (t)+2x(t)-tx(t)+3x(t)=e-t,x(1)=1,x(1)=2,x(1)=3 可化为与之等价的一阶方程组_.12.如果A是33的常数矩阵,-2为A的三重特征值,则方程组x=Ax的基解矩阵expAt=_.13.方程组 的奇点类型是_.二、计算题(共45分) 1.(6分)解方程 = .2.(6分)解方程 x(t)+ =0.3.(6分)解方程 (y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程: S(t)-S(t)=t+1 满足S(0)=1, (0)=2的解.6.(7分)求方程组 的基解矩阵(t).7.(7分)验证方程: 有奇点 x1=1, x2=0,并讨论 相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及 连续, 试证方程 dy-f(x,y)dx=0 为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-x+,且满足条件|f(x1)-f(x2)|N|x1-x2|,其中0N1,证明方程 x=f(x) 存在唯一的一个解.常微分 方程试题参考答案一、填空题(每小题3分,共39分)1. 12. 2+c1t+c23.u= 4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+ 7. (x)= 8.对任意t 9.x(t)=c1et+c2tet+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +cnxn(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2tE+t(A+2E)+ 13.焦点二、计算题(共45分)1. 解:将方程分离变量为 改写为 等式两边积分得 y-ln|1+y|=ln|x|- 即 y=ln 或 ey= 2. 解:令 则得 =0 当 0时 - arc cosy=t+c1 y=cos(t+c1) 即 则x=sin(t+c1)+c2 当 =0时 y= 即 x 3. 解:这里M=y-1-xy, N=x 令 u=xye-x u关于x求 偏导数得 与Me-x=ye-x-e-x-xye-x 相比有 则 因此 u=xye-x+e-x 方程的解为 xye-x+e-x=c4. 解:方程改写为 这是伯努利方程,令 z=y1-2=y-1 代入方程 得 解方程 z= = 于是有 或 5. 特征方程为 特征根为 对应齐线性方程的通解为s(t)=c1et+c2e-t f(t)=t+1, 不是特征方程的根 从而方程有特解 =(At+B),代入方程得 -(At+B)=t+1 两边比较同次幂系数得 A=B=-1 故通解为 S(t)=c1et+c2e-t-(t+1) 据初始条件得 c1= 因此所求解为: S(t)= 6. 解:系数矩阵A= 则 , 而det 特征方程det( )=0, 有特征根 对 对 对 因此基解矩阵 7. 解:因 故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得 化简得 *这里 R(X)= , 显然 (当 时)方程组*中,线性部分矩阵 det(A- )= 由det(A- )=0 得 可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为 线性方程则f(x,y)= 因此仅有依赖于x的 积分因子反之,若仅有依赖于x的 积分因子。这里f(x,y),N=1由- 方程为 这是线性方程.2.证明:由条件|f(x1)-f(x2)| N|x1-x2|,易 知,f(x)为连续函数,任取x0 作逐步点列 xn+1=f(xn) n=0,1, 考虑级数x0+ 因 由归纳法知对任意k,|xk-xk-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全员C证云南版高频题集
- 2025年健康管理实务考试试题及答案解析
- 2025年建筑环境设计师专业水平检测试题及答案解析
- 2025年航空安全管理专家考试试题及答案解析
- 2025年机关消防演练测试题及答案
- 机电润滑基础知识培训课件
- 2025年企业员工安全考核题库及答案
- 2025年慈善基金会招聘笔试预测题
- 2025年安全生产安全文化测试题含答案
- 2025年工程造价师资格认证考试试题及答案解析
- 11声音的三要素(练习)(原卷版)
- 矿产购销合同模板
- 湖北荆州2023年中考语文现代文阅读真题及答案
- 重庆市字水中学2024届九年级上学期期中考试数学试卷(含答案)
- 水闸现场安全检测分析报告
- 车辆定点维修服务保障方案
- 学生营养餐(中央厨房)集中配送项目计划书
- (新)精神卫生知识技能竞赛理论考试题库(含答案)
- 建筑用砂石料采购 投标方案(技术方案)
- 中华护理学会成人肠内营养支持护理团标解读
- 医疗器械质量安全风险会商管理制度
评论
0/150
提交评论