全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【大高考】2017版高考数学一轮总复习 第6章 数列 第1节 数列的概念及简单表示法高考AB卷 理数列的概念及表示方法(2013全国,14)若数列an的前n项和Snan,则an的通项公式是an_.解析Snan,当n2时,Sn1an1.,得ananan1,即2.a1S1a1,a11.an是以1为首项,2为公比的等比数列,an(2)n1.答案(2)n1数列的概念及表示方法1.(2013辽宁,4)下面是关于公差d0的等差数列an的四个命题:p1:数列an是递增数列;p2:数列nan是递增数列;p3:数列是递增数列;p4:数列an3nd是递增数列.其中的真命题为()A.p1,p2B.p3,p4 C.p2,p3D.p1,p4解析如数列为2,1,0,1,则1a12a2,故p2是假命题;如数列为1,2,3,则1,故p3是假命题.故选D.答案D2.(2016浙江,13)设数列an的前n项和为Sn.若S24,an12Sn1,nN*,则a1_,S5_.解析由解得a11,a23,当n2时,由已知可得:an12Sn1,an2Sn11,得an1an2an,an13an,又a23a1,an是以a11为首项,公比q3的等比数列.S5121.答案11213.(2015江苏,11)设数列an满足a11,且an1ann1(nN*),则数列前10项的和为_.解析a11,an1ann1,a2a12,a3a23,anan1n(n2),将以上n1个式子相加得ana123n,即an,令bn,故bn2,故S10b1b2b102.答案4.(2015安徽,18)设nN*,xn是曲线yx2n21在点(1,2)处的切线与x轴交点的横坐标.(1)求数列xn的通项公式;(2)记Tnxxx,证明Tn.(1)解y(x2n21)(2n2)x2n1,曲线yx2n21在点(1,2)处的切线斜率为2n2,从而切线方程为y2(2n2)(x1).令y0,解得切线与x轴交点的横坐标xn1.所以数列xn的通项公式xn.(2)证明由题设和(1)中的计算结果知Tnxxx.当n1时,T1.当n2时,因为x.所以Tn.综上可得对任意的nN*,均有Tn.5.(2014广东,19)设数列an的前n项和为Sn,满足Sn2nan13n24n,nN*,且S315.(1)求a1,a2,a3的值;(2)求数列an的通项公式.解(1)依题意有解得a13,a25,a37.(2)Sn2nan13n24n,当n2时,Sn12(n1)an3(n1)24(n1).并整理得an1.由(1)猜想an2n1,下面用数学归纳法证明.当n1时,a1213,命题成立;假设当nk(k1)时,ak2k1命题成立.则当nk1时,ak12k32(k1)1,即当nk1时,结论成立.综上,nN*,an2n1.6.(2013广东,19)设数列an的前n项和为Sn.已知a11,an1n2n,nN*.(1)求a2的值;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.(1)解依题意,2S1a21,又S1a11,所以a24.(2)解由题意2Snnan1n3n2n,当n2时,2Sn1(n1)an(n1)3(n1)2(n1),两式相减得2annan1(n1)an(3n23n1)(2n1),整理得(n1)annan1n(n1),即1.又1,故数列是首项为1,公差为1的等差数列,所以1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投资合作协议书
- 2026-2031中国光学传感器产业发展前景及供需格局预测报告
- 2026-2031中国管式过滤器行业市场发展深度调查及投资战略可行性报告
- 2025年东营市专业技术人员公需课题库及答案
- 新煤矿安全生产标准化试题及答案(掘进专业)
- 2025年基层医疗机构关于基孔肯雅热和登革热诊疗培训测试题含答案
- 动车组机械师应急通讯录掌握考核试卷及答案
- 第三单元金色的秋天- 西风的话 教学设计 2024-2025学年人教版初中音乐七年级上册
- 二年级下美术教学设计-节节虫-人美版
- 2026-2031中国泡沫镍发展前景评估预测报告
- 福建省泉州市四校2024-2025学年高二上学期11月期中联考物理试卷(含答案)
- 穿T恤听古典音乐学习通超星期末考试答案章节答案2024年
- 重度贫血病例讨论
- (高清版)AQ 2061-2018 金属非金属地下矿山防治水安全技术规范
- 高考英语读后续写专题 02 话题分类+公益组织、公益活动(人与社会)
- 《失智老年人照护》课件-项目四:失智老年人康复照护
- 大学生城市地下空间工程职业生涯规划
- GB/T 43642-2024法医学个体识别技术规范
- 中国传统文化介绍课件:八大菜系介绍(英文版)
- 2024职业性放射性疾病诊断程序和要求
- 脑机接口技术在康复医学中的应用与展望
评论
0/150
提交评论