




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2双曲线的简单性质课时目标了解双曲线的范围、对称性、顶点、离心率、渐近线等几何性质,会根据几何性质求双曲线方程,及学会由双曲线的方程研究几何性质1双曲线的简单几何性质标准方程1 (a0,b0)1 (a0,b0)范围对称性关于_轴对称关于原点对称顶点(a,0),(a,0)渐近线yx离心率e12.(1)双曲线的对称中心叫做双曲线的_;(2)双曲线1的两个顶点为A1(a,0)、A2(a,0)设B1(0,b)、B2(0,b),线段A1A2叫做双曲线的_,它的长等于2a,a叫做双曲线的半实轴长,线段B1B2叫做双曲线的_,它的长等于2b,b叫做双曲线的半虚轴长实轴和虚轴等长的双曲线叫做等轴双曲线,等轴双曲线的渐近线方程为yx.(3)当双曲线的离心率e由小变大时,双曲线的形状就从扁狭逐渐变得_,原因是,当e增大时,也增大,渐近线的斜率的绝对值_一、选择题1下列曲线中离心率为的是()A.1 B.1C.1 D.12双曲线1的渐近线方程是()Ayx ByxCyx Dyx3双曲线与椭圆4x2y21有相同的焦点,它的一条渐近线方程为yx,则双曲线的方程为()A2x24y21 B2x24y22C2y24x21 D2y24x234设双曲线1(a0,b0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为()Ayx By2xCyx Dyx5直线l过点(,0)且与双曲线x2y22仅有一个公共点,则这样的直线有()A1条 B2条 C3条 D4条6已知双曲线1 (a0,b0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|4|PF2|,则此双曲线的离心率e的最大值为()A. B. C2 D.题号123456答案二、填空题7两个正数a、b的等差中项是,一个等比中项是,且ab,则双曲线1的离心率e_.8在ABC中,a,b,c分别是A,B,C的对边,且a10,cb6,则顶点A运动的轨迹方程是_9与双曲线1有共同的渐近线,并且经过点(3,2)的双曲线方程为_三、解答题10根据下列条件,求双曲线的标准方程(1)经过点,且一条渐近线为4x3y0;(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为.11已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为,且过点(4,)(1)求此双曲线的方程;(2)若点M(3,m)在双曲线上,求证:MF1MF2;(3)求F1MF2的面积能力提升12设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B.C. D.13F1、F2是双曲线的左、右焦点,P是双曲线上一点,且F1PF260,SPF1F212,又离心率为2,求双曲线的方程1双曲线1 (a0,b0)既关于坐标轴对称,又关于坐标原点对称;其顶点为(a,0),实轴长为2a,虚轴长为2b;其上任一点P(x,y)的横坐标均满足|x|a.2双曲线的离心率e的取值范围是(1,),其中c2a2b2,且,离心率e越大,双曲线的开口越大可以通过a、b、c的关系,列方程或不等式求离心率的值或范围3双曲线1 (a0,b0)的渐近线方程为yx,也可记为0;与双曲线1具有相同渐近线的双曲线的方程可表示为 (0)32双曲线的简单性质知识梳理1.标准方程1 (a0,b0)1(a0,b0)范围xa或xaya或ya对称性关于x、y轴对称关于原点对称顶点(a,0),(a,0)(0,a),(0,a)渐近线yxyx离心率e1e12.(1)中心(2)实轴虚轴(3)开阔增大作业设计1Be,e2,故选B.2A3C由于椭圆4x2y21的焦点坐标为,则双曲线的焦点坐标为,又由渐近线方程为yx,得,即a22b2,又由2a2b2,得a2,b2,又由于焦点在y轴上,因此双曲线的方程为2y24x21.4C由题意知,2b2,2c2,则b1,c,a;双曲线的渐近线方程为yx.5C点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点6B|PF1|PF2|2a,即3|PF2|2a,所以|PF2|ca,即2a3c3a,即5a3c,则.7.解析ab5,ab6,解得a,b的值为2或3.又ab,a3,b2.c,从而e.8.1(x3)解析以BC所在直线为x轴,BC的中点为原点建立直角坐标系,则B(5,0),C(5,0),而|AB|AC|63)9.1解析所求双曲线与双曲线1有相同的渐近线,可设所求双曲线的方程为 (0)点(3,2)在双曲线上,.所求双曲线的方程为1.10解(1)因直线x与渐近线4x3y0的交点坐标为,而30,b0),如图所示,双曲线的一条渐近线方程为yx,而kBF,()1,整理得b2ac.c2a2ac0,两边同除以a2,得e2e10,解得e或e(舍去),故选D.13解设双曲线方程为1.|F1F2|2c,而e2.由双曲线定义得|PF1|PF2|2ac.由余弦定理得(2c)2|PF1|2|PF2|22|PF1|PF2|cosF1PF2(|PF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核心素养视角下的学习环境优化研究论文
- 茶叶包装间管理制度
- 随车吊车辆管理制度
- 设备安装工艺标准样本
- 裂解炉管道焊接及热处理施工技术措施
- 财务会计辅导材料及试题练习
- 表住宅工程室内空间尺寸质量分户验收记录表
- 黑龙江省齐齐哈尔市克东县第三中学2024-2025学年七年级下学期5月期中英语试题(含笔试答案无听力答案、原文及音频)
- 幼儿教育神秘星空教学设计教案
- 2025年Android性能优化面试题集锦威力加强版-android程序优化 面试
- 2023年马克思主义原理考试知识点汇总
- 华侨大学2013-电磁场与电磁波试卷
- 北京市消防条例培训课件
- 支原体感染后护理查房课件
- 建行反洗钱应急预案
- 路灯养护投标方案(技术方案)
- 国家开放大学电大本科《管理英语4》期末试题题库及答案(试卷号:1389)
- 询价投标文件(范本)
- 去小学化家长培训讲座课件
- 单光纤光镊数值仿真和光阱力计算的中期报告
- 一份完整的卤菜店创业计划书 工作计划
评论
0/150
提交评论