




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷泸西县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义:数列an前n项的乘积Tn=a1a2an,数列an=29n,则下面的等式中正确的是( )AT1=T19BT3=T17CT5=T12DT8=T112 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan353 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)4 的内角,所对的边分别为,已知,则( )111A B或 C或 D5 如图,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为( )A0B45C60D906 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.7 已知向量=(2,3,5)与向量=(3,)平行,则=( )ABCD8 下列函数中哪个与函数y=x相等( )Ay=()2By=Cy=Dy=9 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D910函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )Aa0,b0,c0,d0Ba0,b0,c0,d0Ca0,b0,c0,d0Da0,b0,c0,d011若函数f(x)=kaxax,(a0,a1)在(,+)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )ABCD12设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x二、填空题13已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是14已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=15函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为16如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是已知样本中平均气温不大于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为17设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 18定义在R上的偶函数f(x)在0,+)上是增函数,且f(2)=0,则不等式f(log8x)0的解集是三、解答题19已知函数f(x)=的定义域为A,集合B是不等式x2(2a+1)x+a2+a0的解集() 求A,B;() 若AB=B,求实数a的取值范围20已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间21已知a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC(I)求C的值;()若c=2a,b=2,求ABC的面积22在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标 23已知函数f(x)=log2(m+)(mR,且m0)(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+)上单调递增,求m的取值范围 24在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 泸西县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:an=29n,Tn=a1a2an=28+7+9n=T1=28,T19=219,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C2 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题3 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题4 【答案】B【解析】试题分析:由正弦定理可得: 或,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.5 【答案】C【解析】解:连结A1D、BD、A1B,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,EFA1D,A1BD1C,DA1B是CD1与EF所成角,A1D=A1B=BD,DA1B=60CD1与EF所成角为60故选:C【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养6 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.7 【答案】C【解析】解:向量=(2,3,5)与向量=(3,)平行,=,=故选:C【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案8 【答案】B【解析】解:A函数的定义域为x|x0,两个函数的定义域不同B函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数C函数的定义域为R,y=|x|,对应关系不一致D函数的定义域为x|x0,两个函数的定义域不同故选B【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数9 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题10【答案】A【解析】解:f(0)=d0,排除D,当x+时,y+,a0,排除C,函数的导数f(x)=3ax2+2bx+c,则f(x)=0有两个不同的正实根,则x1+x2=0且x1x2=0,(a0),b0,c0,方法2:f(x)=3ax2+2bx+c,由图象知当当xx1时函数递增,当x1xx2时函数递减,则f(x)对应的图象开口向上,则a0,且x1+x2=0且x1x2=0,(a0),b0,c0,故选:A11【答案】C【解析】解:函数f(x)=kaxax,(a0,a1)在(,+)上是奇函数则f(x)+f(x)=0即(k1)(axax)=0则k=1又函数f(x)=kaxax,(a0,a1)在(,+)上是增函数则a1则g(x)=loga(x+k)=loga(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(x)+f(x)=0,若函数在其定义域为为偶函数,则f(x)f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数减函数=增函数也是解决本题的关键12【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题二、填空题13【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:14【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题15【答案】(3,2)(1,0) 【解析】解:函数f(x)=x2ex的导数为y=2xex+x2ex =xex (x+2),令y=0,则x=0或2,2x0上单调递减,(,2),(0,+)上单调递增,0或2是函数的极值点,函数f(x)=x2ex在区间(a,a+1)上存在极值点,a2a+1或a0a+1,3a2或1a0故答案为:(3,2)(1,0)16【答案】9 【解析】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:917【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:18【答案】(0,)(64,+) 【解析】解:f(x)是定义在R上的偶函数,f(log8x)0,等价为:f(|log8x|)f(2),又f(x)在0,+)上为增函数,|log8x|2,log8x2或log8x2,x64或0x即不等式的解集为x|x64或0x故答案为:(0,)(64,+)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键三、解答题19【答案】 【解析】解:(),化为(x2)(x+1)0,解得x2或x1,函数f(x)=的定义域A=(,1)(2,+);由不等式x2(2a+1)x+a2+a0化为(xa)(xa1)0,又a+1a,xa+1或xa,不等式x2(2a+1)x+a2+a0的解集B=(,a)(a+1,+);()AB=B,AB,解得1a1实数a的取值范围1,120【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档21【答案】 【解析】解:(I)a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC,sinCsinA=sinAcos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025国家自然资源部南通海洋中心(自然资源部南通海洋预报台)劳务派遣制用工招聘1人模拟试卷及1套完整答案详解
- 2025年杭州淳安县第二人民医院公开招聘合同制工作人员2人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025江苏宿迁市中医院招聘事业编制人员15人模拟试卷有答案详解
- 2025国家自然科学基金委员会高技术研究发展中心(基础研究管理中心)招聘应届毕业生3人模拟试卷及答案详解(新)
- 2025年潍坊护理职业学院公开招聘高层次(高技能)人才(10人)考前自测高频考点模拟试题及答案详解(典优)
- 2025年聊城幼儿师范学校公开招聘工作人员(70人)模拟试卷及1套完整答案详解
- 2025福建福州市马尾生态环境局招聘编外人员1人模拟试卷及完整答案详解一套
- 2025江苏徐州市教育局直属事业单位选调工作人员3人模拟试卷完整答案详解
- 2025广东汕头市潮阳区教育局属下学校外出招聘硕士研究生18人考前自测高频考点模拟试题附答案详解(典型题)
- 2025安徽阜阳市颍州区教育局面向本区教育系统选调专职教研员6人考前自测高频考点模拟试题及答案详解(历年真题)
- 口腔预防保健课件
- 九年级数学上(前两章)试题 Microsoft Word 文档1
- 视频监控系统安装施工方案
- -首次执行衔接问题-行政
- GB/T 95-2002平垫圈C级
- 一起重新构想我们的未来:为教育打造新的社会契约
- GB/T 21073-2007环氧涂层七丝预应力钢绞线
- 压力管道特性表
- 高级会计师评审个人业绩报告(精选9篇)
- “手电筒”模型-高考数学解题方法
- 储能型虚拟电厂的建设与思考分析报告
评论
0/150
提交评论