




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
五原县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)=ax3+bx+1(ab0),若f(2016)=k,则f(2016)=( )AkBkC1kD2k2 设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D373 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x4 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD5 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD6 下列四个命题中的真命题是( )A经过定点的直线都可以用方程表示B经过任意两个不同点、的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过定点的直线都可以用方程表示7 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A)150种 ( B ) 180 种 (C) 240 种 (D) 540 种8 是z的共轭复数,若z+=2,(z)i=2(i为虚数单位),则z=( )A1+iB1iC1+iD1i9 设是偶函数,且在上是增函数,又,则使的的取值范围是( )A或 B或 C D或10若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 11A=x|x1,B=x|x2或x0,则AB=( )A(0,1) B(,2)C(2,0) D(,2)(0,1)12设函数f(x)=,f(2)+f(log210)=( )A11B8C5D2二、填空题13抛物线y2=8x上到顶点和准线距离相等的点的坐标为14函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15函数的单调递增区间是16如图,在矩形中, , 在上,若, 则的长=_17在(1+2x)10的展开式中,x2项的系数为(结果用数值表示)18平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题: m,使曲线E过坐标原点; 对m,曲线E与x轴有三个交点; 曲线E只关于y轴对称,但不关于x轴对称; 若P、M、N三点不共线,则 PMN周长的最小值为24; 曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN 的面积不大于m。 其中真命题的序号是(填上所有真命题的序号)三、解答题19【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=(2a)(x1)2lnx,g(x)=(aR,e为自然对数的底数)()当a=1时,求f(x)的单调区间;()若函数f(x)在上无零点,求a的最小值;()若对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围20已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:22cos4sin+6=0(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求C1MN的面积 21已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1)处的切线方程为y=2(I)求a、b的值;()当x1时,不等式f(x)恒成立,求实数k的取值范围 22已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 23已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积24请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm)(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值五原县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x)=ax3+bx+1(ab0),f(2016)=k,f(2016)=20163a+2016b+1=k,20163a+2016b=k1,f(2016)=20163a2016b+1=(k1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用2 【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题3 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题4 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式5 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C6 【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.1117 【答案】A 【解析】人可以分为和两种结果,所以每所大学至少保送一人的不同保送的方法数为种,故选A8 【答案】D【解析】解:由于,(z)i=2,可得z=2i 又z+=2 由解得z=1i故选D9 【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.110【答案】【解析】考点:直线方程11【答案】D【解析】解:A=(,1),B=(,2)(0,+),AB=(,2)(0,1),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键12【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用二、填空题13【答案】( 1,2) 【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=2a2+2=,求得a=2点P的坐标为( 1,2)故答案为:( 1,2)【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题14【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.15【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)16【答案】【解析】在RtABC中,BC3,AB,所以BAC60.因为BEAC,AB,所以AE,在EAD中,EAD30,AD3,由余弦定理知,ED2AE2AD22AEADcosEAD923,故ED.17【答案】180 【解析】解:由二项式定理的通项公式Tr+1=Cnranr br可设含x2项的项是Tr+1=C7r (2x)r可知r=2,所以系数为C1024=180,故答案为:180【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等18【答案】 解析:平面内两定点M(0,2)和N(0,2),动点P(x,y)满足|=m(m4),=m(0,0)代入,可得m=4,正确;令y=0,可得x2+4=m,对于任意m,曲线E与x轴有三个交点,不正确;曲线E关于x轴对称,但不关于y轴对称,故不正确;若P、M、N三点不共线,|+|2=2,所以PMN周长的最小值为2+4,正确;曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为2SMNG=|GM|GN|sinMGNm,四边形GMHN的面积最大为不大于m,正确故答案为:三、解答题19【答案】(1) f(x)的单调减区间为(0,2,单调增区间为2,+);(2) 函数f(x)在 上无零点,则a的最小值为24ln2;(3)a的范围是.【解析】试题分析:()把a=1代入到f(x)中求出f(x),令f(x)0求出x的范围即为函数的增区间,令f(x)0求出x的范围即为函数的减区间;()f(x)0时不可能恒成立,所以要使函数在(0,)上无零点,只需要对x(0,)时f(x)0恒成立,列出不等式解出a大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a的最小值;试题解析:(1)当a=1时,f(x)=x12lnx,则f(x)=1,由f(x)0,得x2;由f(x)0,得0x2故f(x)的单调减区间为(0,2,单调增区间为2,+);(2)因为f(x)0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f(x)0恒成立,即对恒成立令,则,再令,则,故m(x)在上为减函数,于是,从而,l(x)0,于是l(x)在上为增函数,所以,故要使恒成立,只要a24ln2,+),综上,若函数f(x)在 上无零点,则a的最小值为24ln2;(3)g(x)=e1xxe1x=(1x)e1x,当x(0,1)时,g(x)0,函数g(x)单调递增;当x(1,e时,g(x)0,函数g(x)单调递减又因为g(0)=0,g(1)=1,g(e)=ee1e0,所以,函数g(x)在(0,e上的值域为(0,1当a=2时,不合题意;当a2时,f(x)=,x(0,e当x=时,f(x)=0由题意得,f(x)在(0,e上不单调,故,即此时,当x变化时,f(x),f(x)的变化情况如下:x(0,)(,ef(x)0+f(x)最小值又因为,当x0时,2a0,f(x)+,所以,对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,当且仅当a满足下列条件:即令h(a)=,则h,令h(a)=0,得a=0或a=2,故当a(,0)时,h(a)0,函数h(a)单调递增;当时,h(a)0,函数h(a)单调递减所以,对任意,有h(a)h(0)=0,即对任意恒成立由式解得:综合可知,当a的范围是 时,对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使f(xi)=g(x0)成立20【答案】 【解析】解:(1),将其代入C1得:,圆C1的直角坐标方程为:由直线l1:(t为参数),消去参数可得:y=x,可得(R)直线l1的极坐标方程为:(R)(2),可得,【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题 21【答案】 【解析】解:(I)函数f(x)=alnx+的导数为f(x)=,且直线y=2的斜率为0,又过点(1,2),f(1)=2b=2,f(1)=ab=0,解得a=b=1(II)当x1时,不等式f(x),即为(x1)lnx+(xk)lnx,即(k1)lnx+0令g(x)=(k1)lnx+,g(x)=+1+=,令m(x)=x2+(k1)x+1,当1即k1时,m(x)在(1,+)单调递增且m(1)0,所以当x1时,g(x)0,g(x)在(1,+)单调递增,则g(x)g(1)=0即f(x)恒成立当1即k1时,m(x)在上(1,)上单调递减,且m(1)0,故当x(1,)时,m(x)0即g(x)0,所以函数g(x)在(1,)单调递减,当x(1,)时,g(x)0与题设矛盾,综上可得k的取值范围为1,+) 22【答案】 【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医护理学试题库及答案
- 2025年初级社会工作者综合能力模拟考试题及答案
- 塑件模具冷却水循环工艺考核试卷及答案
- 电子元件焊接设备维护工艺考核试卷及答案
- 机床附件组装焊接工艺考核试卷及答案
- 搪瓷表面涂层耐盐雾化学老化工艺考核试卷及答案
- 卫生事业单位招聘专业技术人员公共知识考试试题(有答案)
- 微特电机电机优化仿真工艺考核试卷及答案
- 兽用医疗器具检验工艺考核试卷及答案
- 光学器件清洗工艺考核试卷及答案
- 2025年吉林省中考语文真题(含答案)
- 2025高级会计师考试试题及答案
- 工地建筑钢板租赁合同范本
- 光传输业务配置课件
- 2025年辽宁省地质勘探矿业集团有限责任公司校园招聘笔试备考题库带答案详解
- 2025年青海辅警招聘考试题及答案
- 2025新外研版初中英语八年级上全册课文原文翻译
- 钢结构安装安全操作规程
- 流程优化活动方案
- 消防装备认识课件
- 2025年山西中考道德与法治真题解读及答案讲评课件
评论
0/150
提交评论