




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
怀柔区第一高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD2 已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD3 满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D44 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个5 给出下列命题:多面体是若干个平面多边形所围成的图形;有一个平面是多边形,其余各面是三角形的几何体是棱锥;有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台其中正确命题的个数是( )A0 B1 C2 D36 若集合A1,1,B0,2,则集合z|zxy,xA,yB中的元素的个数为()A5B4C3D27 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆8 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|为( )A8B10C6D49 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形10对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn则在此定义下,集合M=(a,b)|ab=12,aN*,bN*中的元素个数是( )A10个B15个C16个D18个11在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)12已知函数,若存在常数使得方程有两个不等的实根(),那么的取值范围为( )A B C D二、填空题13空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是14某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)15函数y=1(xR)的最大值与最小值的和为2 16将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n3)从左向右的第3个数为17直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_。18小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 三、解答题19已知函数上为增函数,且(0,),mR(1)求的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)g(x0)成立,求m的取值范围 20(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且平面.(1)求证:平面;(2)求证:平面平面.21已知等差数列an满足a1+a2=3,a4a3=1设等比数列bn且b2=a4,b3=a8()求数列an,bn的通项公式;()设cn=an+bn,求数列cn前n项的和Sn22如图,四边形ABCD与AABB都是边长为a的正方形,点E是AA的中点,AA平面ABCD(1)求证:AC平面BDE;(2)求体积VAABCD与VEABD的比值23根据下列条件求方程(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程 (2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程24函数。定义数列如下:是过两点的直线与轴交点的横坐标。(1)证明:;(2)求数列的通项公式。怀柔区第一高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键2 【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。3 【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B4 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B5 【答案】B【解析】111试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B考点:几何体的结构特征6 【答案】C【解析】由已知,得z|zxy,xA,yB1,1,3,所以集合z|zxy,xA,yB中的元素的个数为3.7 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.8 【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,抛物线y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点|AB|=2(x1+x2),又x1+x2=6|AB|=2(x1+x2)=8故选A9 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题10【答案】B【解析】解:ab=12,a、bN*,若a和b一奇一偶,则ab=12,满足此条件的有112=34,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有261=11个,所以满足条件的个数为4+11=15个故选B11【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A12【答案】C【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得,由,可得(负舍),即有,即,则.故本题答案选C.考点:数形结合【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象. 二、填空题13【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题14【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 15【答案】2【解析】解:设f(x)=,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0将函数f(x)向上平移一个单位得到函数y=1的图象,所以此时函数y=1(xR)的最大值与最小值的和为2故答案为:2【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键16【答案】3+ 【解析】解:本小题考查归纳推理和等差数列求和公式前n1行共有正整数1+2+(n1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+故答案为:3+17【答案】【解析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA=,圆的半径为r=,sin=,cos=,tan=,tan2=,故答案为:。18【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题三、解答题19【答案】 【解析】解:(1)函数上为增函数,g(x)=+0在,mx0,2lnx0,在上不存在一个x0,使得f(x0)g(x0)成立当m0时,F(x)=m+=,x,2e2x0,mx2+m0,F(x)0在恒成立故F(x)在上单调递增,F(x) max=F(e)=me4,只要me40,解得m故m的取值范围是(,+)【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想对数学思维的要求比较高,有一定的探索性综合性强,难度大,是高考的重点解题时要认真审题,仔细解答 20【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ与平面内的直线平行,则线面平行,所以取中点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明平面,即平面平面.试题解析:证明:(1)取中点,连结.分别是棱的中点,且.在菱形中,是的中点,且,即且.为平行四边形,则.平面,平面,平面.考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理.21【答案】 【解析】解:(1)设等差数列an的公差为d,则由,可得,解得:,由等差数列通项公式可知:an=a1+(n1)d=n,数列an的通项公式an=n,a4=4,a8=8设等比数列bn的公比为q,则,解得,;(2),=,=,数列cn前n项的和Sn=22【答案】 【解析】(1)证明:设BD交AC于M,连接MEABCD为正方形,M为AC中点,又E为AA的中点,ME为AAC的中位线,MEAC又ME平面BDE,AC平面BDE,AC平面BDE(2)解:VEABD=VAABCDVAABCD:VEABD=4:123【答案】 【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丽声瑞格叔叔拼读课件
- 乡间的小路课件叶佳修
- 公司厂纪厂规安全培训课件
- 安全生产事故(有限空间作业)应急预案
- 危险化学品泄漏应急预案(酸、碱、油品、溶剂等)
- 数据安全事件应急预案(数据可用性)
- 药剂科2025年麻醉药品、精神药品及核对制度考核试题及答案
- 临淄区安全管理培训会课件
- 2025年中小学生交通安全知识竞赛考试题库100题(含答案)
- 2025年全国爱牙日口腔健康知识竞赛考试题库100题(含答案)
- ps6000自动化系统用户操作及问题处理培训
- GA 392-2009警服雨衣
- 商务礼仪情景剧剧本范文(通用5篇)
- 幼教培训课件:《家园共育体系建构与实施策略》
- 《电子制造技术-电子封装》配套教学课件
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
- 某县干部周转宿舍工程可行性研究报告
- 改革开放中国奇迹PPT33页课件
- 原子吸收光谱分析(AAS)
- 厦华验厂不良整改计划表
- 幼儿园绘本:《眼睛的故事》
评论
0/150
提交评论