




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷翔安区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 设m,n是正整数,多项式(12x)m+(15x)n中含x一次项的系数为16,则含x2项的系数是( )A13B6C79D372 在等差数列中,公差,为的前项和.若向量,且,则的最小值为( )A B C D【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力3 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D304 “x0”是“0”成立的( )A充分非必要条件B必要非充分条件C非充分非必要条件D充要条件5 如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)6 双曲线:的渐近线方程和离心率分别是( )ABCD7 直径为6的球的表面积和体积分别是( )A B C D8 “”是“A=30”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也必要条件9 下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=sinxBy=1g2xCy=lnxDy=x3【考点】函数单调性的判断与证明;函数奇偶性的判断【专题】函数的性质及应用【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项10下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤11已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为( )A3B3C1D112如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A, B, CV|VDV|0V二、填空题13已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当ABC的面积最小时,点C的坐标为14调查某公司的四名推销员,其工作年限与年推销金额如表 推销员编号1234工作年限x/(年)351014年推销金额y/(万元)23712由表中数据算出线性回归方程为=x+若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元15在极坐标系中,点(2,)到直线(cos+sin)=6的距离为16函数f(x)=log(x22x3)的单调递增区间为17已知定义在R上的奇函数满足,且时,则的值为 18函数f(x)=ax+4的图象恒过定点P,则P点坐标是三、解答题19一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域20【南京市2018届高三数学上学期期初学情调研】已知函数f(x)2x33(a+1)x26ax,aR()曲线yf(x)在x0处的切线的斜率为3,求a的值;()若对于任意x(0,+),f(x)f(x)12lnx恒成立,求a的取值范围;()若a1,设函数f(x)在区间1,2上的最大值、最小值分别为M(a)、m(a),记h(a)M(a)m(a),求h(a)的最小值21(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.22已知函数f(x)=2|x2|+ax(xR)(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)2存在零点,求a的取值范围23已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围24已知函数f(x)=cosx(sinx+cosx)(1)若0,且sin=,求f()的值;(2)求函数f(x)的最小正周期及单调递增区间翔安区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 D【解析】二项式系数的性质【专题】二项式定理【分析】由含x一次项的系数为16利用二项展开式的通项公式求得2m+5n=16 ,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数【解答】解:由于多项式(12x)m+(15x)n中含x一次项的系数为(2)+(5)=16,可得2m+5n=16 再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(2)2+(5)2=37,故选:D【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题2 【答案】A 【解析】3 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A4 【答案】A【解析】解:当x0时,x20,则0“x0”是“0”成立的充分条件;但0,x20,时x0不一定成立“x0”不是“0”成立的必要条件;故“x0”是“0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系5 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A6 【答案】D【解析】解:双曲线:的a=1,b=2,c=双曲线的渐近线方程为y=x=2x;离心率e=故选 D7 【答案】D【解析】考点:球的表面积和体积8 【答案】B【解析】解:“A=30”“”,反之不成立故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题9 【答案】B【解析】解:根据y=sinx图象知该函数在(0,+)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=x3在(0,+)上单调递减故选B【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义10【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题11【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=ax+y,得y=ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即a=1若a0,则目标函数的斜率k=a0平移直线y=ax+z,由图象可知当直线y=ax+z,此时目标函数只在C处取得最小值,不满足条件综上a=1故选:D【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键注意要对a进行分类讨论12【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为122=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是V|0V故选:D【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目二、填空题13【答案】(,) 【解析】解:设C(a,b)则a2+b2=1,点A(2,0),点B(0,3),直线AB的解析式为:3x+2y6=0如图,过点C作CFAB于点F,欲使ABC的面积最小,只需线段CF最短则CF=,当且仅当2a=3b时,取“=”,a=,联立求得:a=,b=,故点C的坐标为(,)故答案是:(,)【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题14【答案】 【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=,所以=x,当x=8时,y=,估计他的年推销金额为万元故答案为:【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题15【答案】1 【解析】解:点P(2,)化为P直线(cos+sin)=6化为点P到直线的距离d=1故答案为:1【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题16【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)17【答案】【解析】1111试题分析:,所以考点:利用函数性质求值18【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题三、解答题19【答案】 【解析】解:如图,设所截等腰三角形的底边边长为xcm,在RtEOF中,依题意函数的定义域为x|0x10【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围20【答案】(1)a(2)(,1(3)【解析】(2)f(x)f(x)6(a1)x212lnx对任意x(0,+)恒成立,所以(a1)令g(x),x0,则g(x)令g(x)0,解得x当x(0,)时,g(x)0,所以g(x)在(0,)上单调递增;当x(,)时,g(x)0,所以g(x)在(,)上单调递减所以g(x)maxg(),所以(a1),即a1,所以a的取值范围为(,1(3)因为f(x)2x33(a1)x26ax,所以f (x)6x26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令f (x)0,则x1或a f(1)3a1,f(2)4当a2时,当x(1,a)时,f (x)0,所以f(x)在(1,a)上单调递减;当x(a,2)时,f (x)0,所以f(x)在(a,2)上单调递增又因为f(1)f(2),所以M(a)f(1)3a1,m(a)f(a)a33a2,所以h(a)M(a)m(a)3a1(a33a2)a33a23a1因为h (a)3a26a33(a1)20所以h(a)在(,2)上单调递增,所以当a(,2)时,h(a)h()当a2时,当x(1,2)时,f (x)0,所以f(x)在(1,2)上单调递减,所以M(a)f(1)3a1,m(a)f(2)4,所以h(a)M(a)m(a)3a143a5,所以h(a)在2,)上的最小值为h(2)1综上,h(a)的最小值为点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.21【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式22【答案】 【解析】解:(1)当a=1时,f(x)=2|x2|+x=(2分)所以,f(x)在(,2)递减,在2,+)递增,故最小值为f(2)=2; (4分)(2)f(x)=,(6分)要使函数f(x)有最小值,需,2a2,(8分)故a的取值范围为2,2(9分)(3)sinx1,1,f(sinx)=(a2)sinx+4,“h(x)=f(sinx)2=(a2)sinx+2存在零点”等价于“方程(a2)sinx+2=0有解”,亦即有解,(11分)解得a0或a4,(13分)a的取值范围为(,04,+)(14分)【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键23【答案】 【解析】解:(1)f(x)=log3(1+x)log3(1x)为奇函数理由:1+x0且1x0,得定义域为(1,1),(2分)又f(x)=log3(1x)log3(1+x)=f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又1x1,k0,(6分)由f(x)g(x)得log3lo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流企业兼职司机合同范本
- 2025年上海市房屋租赁合同范本个人版
- 2025园林景观施工标准合同范本
- 2025商场店铺装修合同范本
- 2025年农产品种植收购的合同范本
- 2025年版简单的厂房出租合同范本
- 2025建材订货合同范本
- 2025【合同范本】劳务合同
- Unit8 study skills说课稿2025-2026学年牛津译林版英语七年级下册
- 2025年国网高级工理论考试题库(含答案)
- 黑布林阅读初一5《大卫和超级神探》中文版
- 2025届高三化学一轮复习策略讲座
- 50000t天污水厂课程设计
- GB/T 44251-2024腿式机器人性能及试验方法
- 人音版 (五线谱)一年级上册音乐-1 《玩具兵进行曲》教案
- 医药产业园区智慧园区系统建设方案
- 村民集体经济发展规划方案
- 医药行业药品市场营销计划书中的销售预测与预算
- 人教版六年级数学上册第一、二单元试卷及答案
- 20236月信息技术服务管理体系审核员考试试题及答案解析
- 2016年高考语文全国Ⅰ卷《锄》试题及答案
评论
0/150
提交评论