参数化模型的最小长度解.ppt_第1页
参数化模型的最小长度解.ppt_第2页
参数化模型的最小长度解.ppt_第3页
参数化模型的最小长度解.ppt_第4页
参数化模型的最小长度解.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

地球物理反演理论,地球物理反演理论课题组,武汉大学 测绘学院,内容,1,线性反演问题的最小方差解 2,纯欠定问题的解法 3,混定问题的解法 4,先验信息在模型构置中的应用 5,观测数据和模型参数估算值之方差; 6,线性规划 范数解 ; 7, 范数解;,1,线性反演问题的最小方差解,在线性反演问题中,如果观测数据的个数多于模型参数的个数,更准确地说,在的情况下,最简单、最常用的反演方法是最小方差法。这里是数据方程数据核的秩。,设为观测数据与理论计算值之误差 向量,则方差(即目标函数)为:,展开上式得:,最小方差解必须满足: 所以:,例: 一组观测数据为: 现欲用一个平面方程: 拟合之。 式中: 为模型参数; 和 是第个数据 对应的坐标。,2,纯欠定问题的解法,所谓纯欠定问题,是指在 中,未知参数的个数大于观测数据的个数,且矩阵的秩的 情况。换言之,在个方程中,既无相关方程,也无矛盾方 程存在。从线性代数理论可知,此时有无限多个解能满足 线性方程组式,且其误差均为零。这是因为,虽然观测数 据提供了一些确定模型参数的信息,但其数量不足以全部 确定模型参数,或未提供确定模型参数的足够充分的信息 。因此,解不是惟一的,甚至有无限多能拟合观测数据的 解。,为了求得反演问题的一个解,我们必须从无限 多个能拟合观测数据的解中,挑选出一个我们所 需要的特定解。因此,解方程式时,必须加上一 些在观测数据中未包含的信息这种附加给反演 问题的信息叫“先验信息”(priori information)。 。,说明: 加先验信息的目的是为了补充那些为确 定模型参数所不足的信息。因此,为了使反 演问题的解更切合实际情况,就应本着“缺 什么信息,就补充什么信息”的原则。为了 更好地运用“择缺补充”的原则。,几类可能的先验信息:,第一类先验信息是待求地球物理参数的物理性质和其可能 的数值范围。如速度,密度和电阻率等的非负性,它们都 不可能小于零。而且它们的数值,根据一般物理常识可以 限制在一定范围以内。 第二类先验信息来自于其他已知的地质、地球物理和钻井 资料。比如反演地区基底的埋深,油层的厚度,或金属矿 的属性等等。 第三类,某此参数比其他参数对解决地球物理问题更重要 ,此时可以对模型参数进行加权,在一定权系数约束下求 解。,第四类,也是纯欠定问题解法中常应用的先验信息,假定 的地球物理模型“最简单”。这里所谓最简单是指在保留实 际地球物理模型基本特征不变的情况下,对地球物理模型 的一种简化。解的长度,比如说解的欧几里得长度为最小 的模型,应该是一种最简单的模型。,设 式是一纯欠定问题,此时的目标函数, 在该式约束之下有极小,即 根据极值理论,必须引入拉格朗日算子“” 将条件极值问题化为无条件极值问题。 目标函数应为:,求上述目标函数的极小值问题可以化为求:,3,混定问题的解法马夸特(Marquardt)法,当线性反演问题: 呈现min(M,)的情况时,称为混定问题。解混定问题的方法,通常称马夸特法,或脊回归法(ridge regression),又称为阻尼最小二乘法(damping )。,从M、N和r的关系看,由于矩阵的秩r意味着 在方程(2.1)式中,只有个线性无关的 方程,只能确定个非零的解。因此,是超 定问题,而又是欠定问题。许多地球物理线 性反演问题既不完全是超定问题,也不完全 是欠定问题,常常表现为一种混定形式(即 混定问题)。,鉴于混定问题的特殊性,它既有超定问题, 也有欠定问题的性质,因此不难设想其目标 函数应兼有方差项和模型长度项两项内容, 即:,求相对于m的偏导数,并设其为零,简化 后得:,上式中: 为阻尼系数或加权因子,它决定预测误差项和模型范数长度项在极小化目标函数时各自之相对重要性。,4,线性先验信息在模型构制中的应用,在线性反演问题中,如果观测数据的个数多于模型参数的个数,更准确地说,在的情况下,最简单、最常用的反演方法是最小方差法。这里是数据方程数据核的秩。,在解欠定问题时,需要对模型参数强加一些先验信息,以增加(N-M)个不足的信息。然而,这并不表示,在解超定问题时,就不应该、不可能对模型参数强加任何先验信息。恰恰相反,在解欠定问题时,可对模型参数强加先验信息,在解超定问题时,也可对观测数据强加已知的先验信息。,先验信息在模型构制中的应用: 1.对模型参数的限制; 2.对观测数据的限制; 3.等式限制条件的应用; 4.不等式限制条件的应用.,5,观测数据和模型参数估算值之方差,不管是超定问题、欠定问题还是混定问题,均未涉及观测数据的统计特征。实际地球物理资料的反演中,观测数据是有误差的。有误差就要遵守一定的统计特性。在欧几里得空间解地球物理反问题时,对观测数据的统计特性有何要求,这是本次课要讨论的问题。,假定每一个观测数据都是随机变量,且服从 高斯分布规律,即:,对M个独立观测数据来说其联合分布满足:,欲使随机变量d的概率最大,则必须使:,因 范数就意味着观测数据(或模型参数) 必须遵守高斯正态分布的统计规律。实践证 明,大多数地球物理观测数据都服从或近似 服从高斯分布,这就为利用该范数极小求解 地球物理问题提供了可靠的依据。,假定观测数据服从高斯分布,具零平均值, 在方差为 的条件下,分析一下在反演映射 过程中,观测数据的误差对模型参数有何影 响。,利用数据方程(2.1)式,则(2.35)式可 化为: 故在最小方差意义下,有:,最小方差解 之协方差矩阵为: 如观测数据是相互独立的,且均匀单位标准 方差,则上式最后可简化为:,不管是最小方差解还是模型最小长度解,模 型估计值之方差主要都取决于矩阵 ,或其特征值。特征值越小,引起的方差越 大。由此可见,小特征值对模型参数的方差 起着决定性的作用。,6,线性规划 范数解,当观测数据是随机变量,且服从指数分布时,应该用 范数解 式才是符合统计规律的。下面介绍的是线性规划法是一种解范数的行之有效的方法。 线性规划(linear programming)简称,是一种求条件极值的方法。其目标函数和约束条件都是关于自变量的线性方程。所以,线性规划问题是求目标函数。,线性规划问题是求目标函数 : 在约束条件: 的约束下的求极值问题。,对 式所示的约束条件,可引入松弛变 量 ,把它变成等式: 对形如 式所示的约束条件,可引入松 驰变量 ,把它变成等式:,引进松弛变量的目的是把不等式的约束条件 为等式约束条件,以构成统一的形式,即: 式中:,松弛变量的引入,非但不影响目标函数E在 约束条件限制之下求最优解,反而使问题大 大简化。这时线性规划问题就变为求目标函 数: 在约束条件式 限制之下的极值问题。,7, 范数解;,前面讲述了地球物理资料反演中常用的两种“长度” 范数和 范数所定义的长度。除了这两种定义以外,其他范数同样可以在反演中应用。由于范数不同,自然构制出来的模型就有差异,对统计量(也许是观测数据,也许是模型参数)之统计特征的要求也不一样。这是因为,范数的定义不同,对统计量的加权值就不一样。突出最大者,它可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论