毕业设计(论文)外文参考资料及译文-肠出血性大肠杆菌.doc_第1页
毕业设计(论文)外文参考资料及译文-肠出血性大肠杆菌.doc_第2页
毕业设计(论文)外文参考资料及译文-肠出血性大肠杆菌.doc_第3页
毕业设计(论文)外文参考资料及译文-肠出血性大肠杆菌.doc_第4页
毕业设计(论文)外文参考资料及译文-肠出血性大肠杆菌.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文 译文题目: Enterohaemorrhagic Escherichia coli (EHEC) (肠出血性大肠杆菌) 学生姓名: 吴光燕 学号: 0710110413 专 业: 动物科学 所在学院: 动物科学与技术学院 指导教师: 方光远 职 称: 副教授 2011年 3月2日Enterohaemorrhagic Escherichia coli (EHEC)Escherichia coli (E. coli) is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless. Some strains however, such as enterohaemorrhagic E. coli (EHEC), can cause severe foodborne disease. It is transmitted to humans primarily through consumption of contaminated foods, such as raw or undercooked ground meat products and raw milk. Its significance as a public health problem was recognized in 1982, following an outbreak in the United States of America. EHEC produces toxins, known as verotoxins or Shiga-like toxins because of their similarity to the toxins produced by Shigella dysenteriae. EHEC can grow in temperatures ranging from from 7C to 50C, with an optimum temperature of 37C. Some EHEC can grow in acidic foods, down to a pH of 4.4, and in foods with a minimum water activity (Aw) of 0.95. It is destroyed by thorough cooking of foods until all parts reach a temperature of 70C or higher. E. coli O157:H7 is the most important EHEC serotype in relation to public health; however, other serotypes have frequently been involved in sporadic cases and outbreaks.The diseases caused by EHECSymptoms of the diseases caused by EHEC include abdominal cramps and diarrhoea that may in some cases progress to bloody diarrhoea (haemorrhagic colitis). Fever and vomiting may also occur. The incubation period can range from three to eight days, with a median of three to four days. Most patients recover within 10 days, but in a small proportion of patients (particularly young children and the elderly), the infection may lead to a life-threatening disease, such as haemolytic uraemic syndrome (HUS). HUS is characterized by acute renal failure, haemolytic anaemia and thrombocytopenia. It is estimated that up to 10% of patients with EHEC infection may develop HUS, with a case-fatality rate ranging from 3% to 5%. Overall, HUS is the most common cause of acute renal failure in young children. It can cause neurological complications (such as seizure, stroke and coma) in 25% of HUS patients and chronic renal sequelae, usually mild, in around 50% of survivors.The incidence of EHEC infections varies by age group, with the highest incidence of reported cases occurring in children aged under 15 years (0.7 cases per 100 000 in the United States). Sixty-three to 85% of cases are a result of exposure to the pathogen through food. The percentage of EHEC infections which progress to HUS varies between sporadic cases (3%-7%) and those associated with outbreaks (20% or more). In epidemiological terms, there is generally a background of sporadic cases, with occasional outbreaks. Some of these outbreaks have involved a high number of cases, such as in Japan in 1996, where an outbreak linked to contaminated radish sprouts in school lunches caused 9 451 cases. Data on the situation in developing countries are limited, as surveillance for this pathogen is not done routinely.Sources of infectionMost available information relates to serotype O157:H7, since it is easily differentiated biochemically from other E. coli strains. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods, such as raw or undercooked ground meat products and raw milk. Faecal contamination of water and other foods, as well as cross-contamination during food preparation (with beef and other meat products, contaminated surfaces and kitchen utensils), will also lead to infection. Examples of foods implicated in outbreaks of E. coli O157:H7 include undercooked hamburgers, dried cured salami, unpasteurized fresh-pressed apple cider, yogurt, cheese and milk. An increasing number of outbreaks are associated with the consumption of fruits and vegetables (sprouts, lettuce, coleslaw, salad) whereby contamination may be due to contact with faeces from domestic or wild animals at some stage during cultivation or handling. EHEC has also been isolated from bodies of water (ponds, streams), wells and water troughs, and has been found to survive for months in manure and water-trough sediments. Waterborne transmission has been reported, both from contaminated drinking-water and from recreational waters.Person-to-person contact is an important mode of transmission through the oral-faecal route. An asymptomatic carrier state has been reported, where individuals show no clinical signs of disease but are capable of infecting others. The duration of excretion of EHEC is about one week or less in adults, but can be longer in children. Visiting farms and other venues where the general public might come into direct contact with farm animals has also been identified as an important risk factor for EHEC infection.Control and prevention methodsThe prevention of infection requires control measures at all stages of the food chain, from agricultural production on the farm to processing, manufacturing and preparation of foods in both commercial establishments and the domestic environment. Available data are not sufficient to enable the recommendation of specific intervention methods on the farm in order to reduce the incidence of EHEC in cattle. However, risk assessments conducted at national level have predicted that the number of cases of disease might be reduced by various mitigation strategies for ground beef (for example, screening the animals preslaughter to reduce the introduction of large numbers of pathogens in the slaughtering environment). Good hygienic slaughtering practices reduce contamination of carcasses by faeces, but do not guarantee the absence of EHEC from products. Education in hygienic handling of foods for abattoir workers and those involved in the production of raw meat is essential to keep microbiological contamination to a minimum. Similarly, prevention of contamination of raw milk on the farm is virtually impossible, but the education of farm workers in principles of good hygienic practice should be carried out in order to keep contamination to a minimum. The only effective method of eliminating EHEC from foods is to introduce a bactericidal treatment, such as heating (e.g. cooking or pasteurization) or irradiation. Some countries implement the policy that raw ground beef is considered contaminated if it is found to contain E. coli O157:H7.Preventive measures for E. coli O157:H7 infection are similar to those recommended for other foodborne diseases. However, some of the measures may need to be reinforced for EHEC, particularly in view of its importance in vulnerable groups such as children and the elderly. Since a number of EHEC infections have been caused by contact with recreational water, it is also important to protect such water areas, as well as drinking-water sources, from animal wastes. Recommendations to reduce the public health riskTo ensure that those who come directly or indirectly into contact with food are not likely to contaminate it with EHEC, food handlers should follow the Recommended International Code of Practice, General Principles of Food Hygiene (CAC/RCP 1-1969, Rev. 3-1997, Amd. (1999); Section VII - Establishment: personal hygiene), contained in: Joint FAO/WHO Food Standards Programme, Codex Alimentarius Commission. General requirements (food hygiene). FAO/WHO, Rome, 2001 (Second edition) .Basic good food hygiene practice, as described in the WHO Five keys to safer food , can prevent the transmission of pathogens responsible for many foodborne diseases, and also protect against foodborne diseases caused by EHEC. Such recommendations should in all cases be implemented, especially Cook thoroughly so that at least the centre of the food reaches 70C.Specific recommendations to sprout producersIn recent years, the popularity of sprouted seeds has increased significantly owing to their nutritional value. However, reports of foodborne outbreaks associated with such raw vegetable sprouts have raised concerns among public health agencies and consumers. Outbreak investigations have indicated that pathogens found on sprouts most likely originate from the seeds. The seed may be contaminated in the field or during harvesting, storage or transportation. During the germination process in sprout production, low levels of pathogens present on seeds may quickly reach levels high enough to cause disease. Therefore specific care is needed. Guidance is available in the Codex Code of Hygienic Practice for Fresh Fruits and Vegetables, Annex for sprout production.肠出血性大肠杆菌(EHEC)大肠杆菌(E.coli)是一种在人和温血动物肠道内常见的细菌。大多数大肠杆菌菌株无害。然而,一些菌株,例如肠出血性大肠杆菌(EHEC)可引起严重的食源性疾病。它主要通过食用被污染的食物传染给人类,这些食物如生的或烹调不彻底的绞碎肉制品和原料奶。它作为一个公共卫生问题的重要性得到承认是在1982年继美利坚合众国的一次该病暴发之后。肠出血性大肠杆菌产生的毒素称为志贺样毒素或类志贺毒素,这是因为它们与志贺氏痢疾杆菌产生的毒素相似。肠出血性大肠杆菌可在7-50的温度中生长,其最佳生长温度为37。一些出血性大肠杆菌可在pH值达到4.4和最低水活度(Aw)为0.95的食物中生长。通过烹调食物,使食物的所有部分至少达到70以上时可杀灭该菌。O157:H7大肠杆菌是与公共卫生有关的最重要的出血性大肠杆菌的血清类型;然而在散在病例和暴发中也经常涉及其它血清类型。肠出血性大肠杆菌引起的疾病肠出血性大肠杆菌引起的疾病症状包括腹部绞痛和腹泻,一些病例可能发展为血性腹泻(出血性大肠炎)。还可能出现发烧和呕吐。潜伏期3至8天,平均为3至4天。大多数病人10天内康复,但是有少数病人(特别是幼儿和老年人)的染病可能发展为威胁生命的疾病,例如溶血尿毒综合症(HUS)。溶血尿毒综合症的特点是急性肾衰竭、溶血性贫血和血小板减少。据估计,10%的肠出血性大肠杆菌感染者可发展为溶血尿毒综合症,病例死亡率为3%至5%。总体来说,溶血尿毒综合症是幼儿急性肾衰竭的最通常原因。25%的溶血尿毒综合症病人可发生神经并发症(例如癫痫发作、中风和昏迷),在大约50%的幸存者中发生通常是轻型的慢性肾病。不同年龄组的肠出血性大肠杆菌感染的发病不尽相同,所报病例的最高发病率发生在15岁以下的儿童中(美利坚合众国每10万病例中占0.7)。63%至85%的病例是由于通过食物感染病菌。肠出血性大肠杆菌发展为溶血尿毒综合症的百分比在散在病例(3%-7%)和与暴发相关的病例(20%或更多)之间有所不同。从流行病学的角度来看,偶然暴发一般存在有散在病例的背景。一些暴发涉及大量病例,例如1996年日本发生的情况,该次暴发与学校午餐中食用污染的萝卜缨有关,造成9451人发病。有关发展中国家这一情况的数据有限,因为没有对这种病菌进行常规监测。感染源大多数现有信息均关系到O157:H7血清型,因为从生物化学方面它容易与其它大肠杆菌菌株相区别。这一病菌的贮主看来主要是家畜和其它反刍动物,例如骆驼。它主要通过食用污染的食物,例如未经烹调或烹煮不透的绞碎肉制品和原料奶向人类传播。受粪便污染的水和其它食物以及食物制备期间的交叉污染(与牛肉和其它肉制品、受污染的板面和厨房用具)也将导致感染。涉及O157:H7大肠杆菌暴发的食物包括未煎透的汉堡包、风干肠、未经高温消毒的新鲜苹果酒、酸奶、奶酪和牛奶。越来越多的暴发与食用水果和蔬菜(芽苗菜、生菜、凉拌卷心菜、色拉)有关,污染可能是由于种植或处理期间的某一阶段接触到家畜或野生动物的粪便。也从水源(池塘、溪水)、井和水槽中分离出肠出血性大肠杆菌,并发现它们在粪便和水槽污垢中能够存活数月。有关于来自被污染的饮用水和游憩用水的水源性传播的报告。 人际接触是通过口粪传播的一个重要方式。有报告不症状带菌者的情况,这些人没有疾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论