Matrixinversionproblem矩阵的求逆问题.doc_第1页
Matrixinversionproblem矩阵的求逆问题.doc_第2页
Matrixinversionproblem矩阵的求逆问题.doc_第3页
Matrixinversionproblem矩阵的求逆问题.doc_第4页
Matrixinversionproblem矩阵的求逆问题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Matrix inversion problem. Given a non-singular square matrix , obtain a matrix such that . The matrix is the inverse of . In our course, we would be considering only inverses of non-singular matrices over real field (no complex matrix).Matrix inversion through its adjoint.Good for small matrices. Consider the matrix . Let the corresponding cofactor matrix be where , etc. Then the inverse of is This scheme is impractical for large matrices. Consequently, we need easier approaches to deal with the problem. We would deal with the square matrices only. Weassume its determinant is non-zero.Given a non-singular square matrix we can obtain its inverse . We will approach this problem from different angles. a. Using elementary matrices: A matrix is an elementary matrix if it is obtained from an identity matrix by a single row operation. e.g We can generate a number of elementary matrices from it. a. b. c. d. A general matrix can be expressed as a single column 3 rows: Let What is the effect of operating by an elementary matrix on A? For instance, , interchange. is replaced by , by Replace by and These demonstrate the effect of elementary matrices on general matrices - they effectively achieve row-operations. Therefore, using such matrices, we can transform a non-singular matrix A into its row-echelon form. Thus, Therefore, the matrix product This gives us a procedure to obtain inverse of a non-singular matrix A using row transformation.a. Start with an augmented matrix . b. Carry out row-transformation on this using elementary matrices.c. When the left-side becomes an identity matrix, the transformed right side must be the inverse of the original matrix . Observe:a. Two matrices and are row equivalent to each other if one can get from using a sequence of elementary matrices on the latter. That means b. Every elementary row-operation can be “undone” by another elementary row-operation. Therefore, every elementary matrix has an inverse.c. The inverse of a product is the product of the inverses in reverse order. For instance,d. Finally, given any the following statements are equivalent:1. has an inverse.2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论