




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章概述 大数定律和中心极限定理就是使用极限方法研究大量随机现象统计规律性的。 阐明大量重复试验的平均结果具有稳定性的一系列定律都称为大数定律。 论证随机变量(试验结果)之和渐进服从某一分布的定理称为中心极限定理。,第五章 大数定律和中心极限定律,大数定律 概率论中有关阐明大量随机现象 平均结果的稳定性的一系列定理。迄今为止,人们已发现 很多大数定律(laws of large numbers)所谓大数定律, 简单地说,就是大量数目的随机变量所呈现出的规律, 这种规律一般用随机变量序列的某种收敛性来刻画。 本章仅介绍几个最基本的大数定律。,51大数定律,大数定律 在叙述大数定律之前,首先介绍两个基本概念 定义5.1 设 为一个随机变量序列,记为 ,若对任何n2,随机变量 都相互独立 ,则称 是相互独立的随机变量序列。 定义5.2 设 为一随机变量序列,X为一随机变量 或常数,若对任意0,有 则称 依概率收敛于X,记为 或 ,( ) . 下面是一个带普遍性结果的大数定律。,定理1(切比雪夫大数定律) 设独立随机变量,分别有数学期望及方差,,且D(Xi) C (C为常数,i = 1,2,),则对任意 (0),恒有,或,(P123),(5-3),证明 因 为独立随机变量序列,故 根据切比雪夫不等式可得,利用计算极限的夹逼准则可知,上式成立。 本结果由俄国数学家切比雪夫于1866年证明,是关于大数定律的普遍结果,许多大数定律的古典结果都是它的特例.,切比雪夫大数定律表明,当n 很大时,X1,X2, ,Xn的算术平均值,的取值,集中,在其数学期望,附近。,推论 设独立随机变量,服从同一,分布,且有数学期望 及方差 ,则对于,任意 (0),恒有,(5-4),即 当n 很大时,,设 为n 次独立试验中事件A发生的次数,p是A在,一次试验中发生的概率,则对任意 (0),恒有,定理2 (贝努利大数定律),设 为n 次独立试验中事件A发生的次数,p是A在,一次试验中发生的概率,则对任意 (0),恒有,(其中 为A 发生的频率。),贝努利大数定律说明了当重复独立试验次数 n 很大时,频率与其概率之差可为任意小, 即说明了其频率的稳定性。,推论1使我们关于算术平均值的法则有了理论上的依据。如我们要测量某段距离,在相同条件下重复进行n次,得n个测量值 ,它们可以看成是n个相互独立的随机变量具有相同的分布、相同的数学期望和方差 ,由推论1的大数定律知,只要n充分大,则以接近于1的概率保证 这便是在n较大情况下反映出的客观规律,故称为“大数”定律。 比推论1条件更宽的一个大数定律是辛钦(Khintchine)大数定律,它不需要推论1条件中“方差 存在”的限制,而在其它条件不变的情况下,仍有(5-4)式的结论。,人们已经知道,在自然界和生产实践中遇到大量随机变量都服从或近似服从正态分布,正因如此,正态分布占有特别重要的地位。那么,如何判断一个随机变量服从正态分布显得尤为重要。如经过长期的观测,人们已经知道,很多工程测量中产生的误差X都是服从正态分布的随机变量。分析起来,造成误差的原因有仪器偏差X1、大气折射偏差X2,温度变化偏差X3、估读误差造成的偏差X4等等,这些偏差Xi 对总误差 的影响都很微小,没有一个起到特别突出的影响,虽然每个Xi的分布并不知道,但 却服从正态分布。类似的例子不胜枚举。,52中心极限定理,. (5-6) 在什么条件下, , 这是十八世纪以来概率论研究的中心课题,因而,从二十世纪二十年代开始,习惯上把研究随机变量和的分布收敛到正态分布的这类定理称为中心极限定理(Central Limit Theorems)。,设 为一随机变量序列,其和的标准化随机变量,52中心极限定理,中心极限定理 概率论中有关论证独立随机 变量的和的极限分布是正态分布的一系列定理。,独立同分布的中心极限定理 德莫佛拉普拉斯中心极限定理,(常用),(林德贝格-列维中心极限定理,定理1(独立同分布的中心极限定理),设独立随机变量,服从同一,分布,且有数学期望E( )= 及方差D( )= ,,则对于任意 (0),恒有,(P122),(林德贝格-列维中心极限定理),等价的描述:,当n很大时有如下结论:,定理1:独立同分布的中心极限定理的常用形式,当n很大时,,定理2(德莫佛拉普拉斯中心极限定理),设随机变量,则对于任意区间(a, b ),恒有,E( )= np,D( )= p(1-p) (两点分布) D( )= np(1-p) (二项分布),之和,下面的图形表明:正态分布是二项分布的逼近.,中心极限定理的意义,在后面的课程中,我们还将经常用到中心极限定理.,中心极限定理是概率论中最著名的结果之一,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么很多自然群体的经验频率呈现出钟形曲线这一值得注意的事实.,关于这些近似公式的使用,现作如下说明: (1)注意到 ,则推论表明,对固定的p和较大的n,二项分布可用正态分布逼近; (2)“较大的n”是一个较为模糊的概念,究竟多大才是较“大”要依据实际问题来定。一般地,如果n50(有时亦可放宽到n30),就可认为是较大的n; (3)第二章泊松定理表明,当p很小(可设想成p随n的变化趋于0)、n较大且np不太大时,二项分布可用泊松分布逼近。在实际中,当p0.1、n较大且np5时,常用泊松分布(见附表1)逼近二项分布;当n较大且np5时,常用正态分布做二项分布的近似计算。,最后,我们指出大数定律与中心极限定理的区别:设 为独立同分布随机变量序列,且 , 则由定理5.1的推论1,对于任意的0有 .大数定律并未给出 的表达式,但保证了其极限是1. 而在以上条件下,中心极限定理5.2(林德伯格莱维)亦成立 .,由于 因此,在所给条件下,中心极限定理不仅给出了概率的近似表达式,而且也能保证了其极限是1,可见中心极限定理的结论更为深入。,这时,对于任意的0及某固定的n,有,例 计算机进行加法计算时,把每个加数取为最 接近于它的整数来计算,设所有的取整误差是相互 独立的随机变量,并且都在区间- 05,05上服从 均匀分布,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年 南昌大学校内外招聘考试笔试试题附答案
- 2025年 河北软件职业技术学院选聘工作人员考试试题附答案
- 桑蚕丝定位男长巾项目投资可行性研究分析报告(2024-2030版)
- 2025年 安康市审计局事业单位招聘考试笔试试题附答案
- 2023-2028年中国河南白酒行业市场深度分析及投资策略咨询报告
- 2025年中国智慧商城建设市场前景预测及投资规划研究报告
- 2025年中国屏山炒青茶行业市场发展监测及投资战略规划报告
- 宝鸡醋项目可行性研究报告
- 中国电池制造行业全景评估及投资规划建议报告
- 销售顾问培训课件
- 关键工程施工进度计划网络图及施工进度总体计划网络图
- SB/T 10784-2012洗染服务合约技术规范
- GB/T 16940-2012滚动轴承套筒型直线球轴承外形尺寸和公差
- GB/T 15814.1-1995烟花爆竹药剂成分定性测定
- 煤矿安全规程露天部分参考题库(含答案)
- 紫铜材质证明
- 新产品评审管理办法
- (参考)菲达公司国内电除尘器业绩表
- 大学生职业生涯规划与就业指导教案第5讲:兴趣探索
- 门店电表记录表
- 七年级劳技 花卉种植 花卉用途 PPT学习教案
评论
0/150
提交评论