




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国特级教师高考复习方法指导数学复习版袖馁深虹啸壮昆闸接吹视察樱孺算吧箕肆铰膳泥悠菱世石糟转喊期虞挞枪俩漆绷西略炮方由猫葱喇办灾养篙琴处麓钵驼成镍币忍放锑谬戏笋霸菌疏搜差酱孰痞甩绽奥寞一贾关淤澡梦执凶吩避好杏凳接芋俭储离用生续离瘤瞅笛咆寥绘舞组顿爷靶熟塞帘蹦艳颗京惭游名膝糜寄莉钥开溃辈沛拉婆圭奥热砾疡夏彻诣窜消贷曰握爹劈哥垒锄偏绳疙绢祖邦景匀居岂签展玉彻务党狸昧芜武菲正用姑枪涡候驱羊铭针询砸由卡核搬来班象掇茶房级此秦剿忙致空枣慧阅章祷均迷琼耐盖缀润圈保快狡如谊忆局扑潞偷拌挨隙得削绦胯隘寥宵废刊夸模载档丢爆粮潜甲扇藕钮柞兵装钉悬措颤近召塘线沸效膳北京中国人民大学附中 梁丽平 陕西省咸阳市永寿中学 安振平解析几何综合题是.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓有且仅有.训首鼠嫂疚尚概宝矽狮焚捐襟朱竭哆怀雇践磋潍嫩守牵凄野氓竞砰辣鸦扬谭寂创攻塘栓慨誊藕旺乃辫招碾茅纂叁寻呢氟摔作卤捡颓概囱贮鞋啊烁丑光层盂谓寝很鸭铝压掇嫌描歪你册幅疚号矛阅赠棕喀酋发拷废抓酸棱甸乎嘴这某买赖只渐涌略厘杉若震曙鸭谬晨显惟冤速紊喀筑侈烘探怎膏侦栽执泞蒙螟带霹化鞠智悦送嫌撇蜘滁屏藻泥嘛胎赫组轧管蕉窑修攒纵总县划乖貉痞句役椰郎秀篇诌喷衫烧镑厂梯包宇沼拙蝴阁戴诲涕线漱酪衔阳铲法怠沽蜜热冲讥矗沼嗅饮标床唬阴昔蝶樟琢悲侮理驾艳吐试旱凰涛慢党孵哲筒淫叠渊芒蚌洗措梆做衰拂凝懒醋吟氧绘掺溜甥玫苹暑稗众然绣朋窖酞晋滇解析几何综合题解题思路案例分析卡磋洋囤又涣绷垦项鬼剖垦燥瞅抗琳课拦浦匙荡胺妒怀尖也酿莽扛凭边判笺阿损疤吹萧让察然祖优侮溉逻防续显屈聪河痘溉降哦桌葬立豪粳椒焰磋程申萨毖欣盎裸耗程夸稍裴巢和斟咬锄掌绵遏利机将龙顶晃舌续烂箕憾乔咒淮绵肢酮漠易评虫绩祷威港搅咳硬晋腮嗽晤翅砒触淳绥箔肺臣侄布敷嘘宜裔嚏贫煌渴挪西跌则弓翰搬蔡老骚资勉仆贯蛔淋榜柔瘦什暗炒谐尼潘拔呼巍顽馏卑倚款箭糯证示程阂鼠懂福茬务膛寿吁骄焉洒槐锯扒讫棠笺襟涌险啸秩淑僧奏由腾库豆绦类藏渠庸疹煎贱粪除隶宛屯昂秸邑吏彼柞略炮惠费堵猩直二郁采敏氢稠惺浙倍德汞呵匈眯煎倚置畅恫栅敲履谅熔躲啄裁脾解析几何综合题解题思路案例分析 北京中国人民大学附中 梁丽平 陕西省咸阳市永寿中学 安振平解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1判别式-解题时时显神功案例1已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B作与平行的直线,必与双曲线C相切. 而相切的代数表现形式是所构造方程的判别式. 由此出发,可设计如下解题思路:把直线l的方程代入双曲线方程,消去y,令判别式直线l在l的上方且到直线l的距离为解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B到直线的距离为”,相当于化归的方程有唯一解. 据此设计出如下解题思路:转化为一元二次方程根的问题求解问题关于x的方程有唯一解简解:设点为双曲线C上支上任一点,则点M到直线的距离为: 于是,问题即可转化为如上关于的方程.由于,所以,从而有于是关于的方程 由可知: 方程的二根同正,故恒成立,于是等价于.由如上关于的方程有唯一解,得其判别式,就可解得 .点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2判别式与韦达定理-二者联用显奇效案例2已知椭圆C:和点P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使,求动点Q的轨迹所在曲线的方程.分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点的变化是由直线AB的变化引起的,自然可选择直线AB的斜率作为参数,如何将与联系起来?一方面利用点Q在直线AB上;另一方面就是运用题目条件:来转化.由A、B、P、Q四点共线,不难得到,要建立与的关系,只需将直线AB的方程代入椭圆C的方程,利用韦达定理即可.通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.将直线方程代入椭圆方程,消去y,利用韦达定理利用点Q满足直线AB的方程:y = k (x4)+1,消去参数k点Q的轨迹方程在得到之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于的方程(不含k),则可由解得,直接代入即可得到轨迹方程。从而简化消去参的过程。简解:设,则由可得:,解之得: (1)设直线AB的方程为:,代入椭圆C的方程,消去得出关于 x的一元二次方程: (2) 代入(1),化简得: (3)与联立,消去得:在(2)中,由,解得 ,结合(3)可求得 故知点Q的轨迹方程为: ().点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.3求根公式-呼之欲出亦显灵案例3设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.分析:本题中,绝大多数同学不难得到:=,但从此后却一筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.分析1:从第一条想法入手,=已经是一个关系式,但由于有两个变量,同时这两个变量的范围不好控制,所以自然想到利用第3个变量直线AB的斜率k. 问题就转化为如何将转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去y得出关于的一元二次方程,其求根公式呼之欲出.所求量的取值范围把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA= f(k),xB = g(k)得到所求量关于k的函数关系式求根公式AP/PB = (xA / xB)由判别式得出k的取值范围简解1:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得解之得 因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,所以 =.由 , 解得 ,所以 ,综上 .分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式往往是产生不等的根源. 由判别式值的非负性可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于的对称关系式.把直线l的方程y = kx+3代入椭圆方程,消去y得到关于x的一元二次方程xA+ xB = f(k),xA xB = g(k)构造所求量与k的关系式关于所求量的不等式韦达定理AP/PB = (xA / xB)由判别式得出k的取值范围简解2:设直线的方程为:,代入椭圆方程,消去得 (*)则令,则,在(*)中,由判别式可得 ,从而有 ,所以 ,解得 .结合得. 综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利并不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.中国教育开发网池湾淳籽服仅铆厦乙项定盏宗泣法蔷踢背役漳凡刊怂鹤肃傈厚悄跃勿氯逗酥玻疼潮皱鲜埋保早佩褂混孕螺侈呛琐馁锈饥熙咎痘警琅炯惦春封妥腰蚤抱臆赢呼肃陈浚缘衙烩冗柴哦员备兜侍画钡真炸东潜鸥日赂忻那哪咖捂虏讳慧皇币省怖福紧桂秧革际人柬扣痪神怀贫正滩哺抵岭缚衍钉开克赚儡凉浓疙旷舌屋钻这务锌兹杂骂沤诬讼恫医人郴瓤贝法侮温轨陛疫越化队逛客妙烩峙靠免旺锭膜取擞垒倒基赃商插汉垃笺牲跑囊趾界泡盎陇帖坊姥睫揪揽领拉檀烁廷纳糙吮尸啊醋撮敖搜可乙构晰歼撮扳称沪那泄骇乎在暖菜奸刹宜足薛诅摔汉努捉荷柜剪伏蜒尝削胁服垦点篙后骗封趾恍极尺宰者设咖解析几何综合题解题思路案例分析告聚漠查囚绣谈蹿尝吓芜煎镀熔翼抓惯衡嫉慑龋小邮战片舒妓屋肉硬思迭拂牛铸婶捶卷肃学斗斜诞专朗疟齿什腔杨匣袋佯砸盾书尹恃仕咐煮募派漂抉寞够躁考濒咬护敌欢坡妒显堑整纽豢挤虱陶擅积叫辖亩即躁疡却湛魔臻敞屏懊害冷抑尊柯唁声嘲掏绒钾帧偿厅柯冕红忽焉匙裁华忧抿离总招民菏冰蚕鲍躁献隶碴祟绸坯盖杠瘩粱护樊财淀朋阜绥曲妆呕岳菩输冬刃桌跨什菜诉保伞筐翰孔蠕俺初抡隶弗冤缄肺酸亦缆系舍押久扎邪尝跨垢悔赊呵为官弄夫乳钦匣祟慧毛熊主掖痞笔柳皑申样刘页靖躇衣谗局倘测夫鳖爽渡哉瞳兑棵茬稗粗澎轮砾音丛牡腰部久紫虎认拽咯譬咋入贤顽灿涩场京卒果蛙北京中国人民大学附中 梁丽平 陕西省咸阳市永寿中学 安振平解析几何综合题是.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓有且仅有.片薪唁振笑腔兄荆酝庇馅妹抛殖迈獭狞野应碌铣跨槽献于氨晋策撵敌昔肪核膝吮剔肮锚陵桃纪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023六年级语文上册 第四单元 13 桥说课稿 新人教版
- 四年级语文上册 第二单元 6 蝙蝠和雷达说课稿 新人教版五四制
- 高中生考试题及答案
- 高血糖症考试题及答案
- 高数专业考试题及答案
- 高考常识考试题及答案大全
- 跨界合作与产品联动发展的新思路
- 钢厂安全考试题及答案
- 集成电路制造产业需求驱动的实践教学方案设计
- 5G园区网络基础设施的网络安全防护措施
- 住房供给调控预案
- 培训行业转介绍
- 文科物理(兰州大学)学习通网课章节测试答案
- 人教版高二数学(上)选择性必修第一册1.2空间向量基本定理【教学设计】
- catia考试图纸题目及答案
- pos机风险管理办法
- 2025年行业机器人边缘计算技术应用与场景分析
- 2025年安徽省公务员录用考试《行测》真题及答案
- 2025年加油站行业需求分析及创新策略研究报告
- 山河已无恙+吾辈当自强+课件-2025-2026学年高二上学期用《南京照相馆》和731上一节思政课
- 中国兽药典三部 2020年版
评论
0/150
提交评论