一元一次方程应用题重点2_第1页
一元一次方程应用题重点2_第2页
一元一次方程应用题重点2_第3页
一元一次方程应用题重点2_第4页
一元一次方程应用题重点2_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、列方程解应用题的步骤:审题:理解题意。1、弄清题目中的对象,找出题目中代表着对象之间关系的句子和词;2、弄清题目中有什么,要我们干什么,找出有什么(已知)和干什么(未知)之间的关系;从应用题来看一个题一般存在这两个以上的关系,这两关系一是题目中给出,二是题目中只给出一个,另一个关系是我们日常生活中常用到的一些等量关系(例如:路程=速度时间等)所以解应用题关键是找出题目的等量关系,先就要长到代表等量关系的句子和词语(如:谁比谁多,谁比谁少,谁是谁的几倍,谁是谁的几分之几等)。解题时常用横线画出代表等量关系的句子和词语。设元(未知数)。直接未知数:题目中问什么设什么;间接未知数:先通过设未知数求出与与问题相关的量,然后再通过一些关系求出题目中的问题。(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。但一元一次方程一般都只设一个未知数列一个方程。 用含未知数的代数式表示相关的量。 列方程:寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 解方程(6)检验:一是检验是否使方程有意义,例如分母不为0等;二是检验是否使实际实际问题有意义(如;2/3个人等)。 (7)答题:回答出题目所问。 二、常见的常识性等量关系及关键词语(1)和、差、倍、分问题。此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。(2)等积变形问题。此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: 形状面积变了,周长没变;原料体积成品体积。(3)调配问题。从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有: 既有调入又有调出;只有调入没有调出,调入部分变化,其余不变;只有调出没有调入,调出部分变化,其余不变。在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系。例1.甲、乙两书架各有若干本书,如果从乙架拿100本放到甲架上,那么甲架上的书比乙架上所剩的书多5倍,如果从甲架上拿100本书放到乙架上,两架所有书相等。问原来每架上各有多少书?讲评:本题难点是正确设未知数,并用含未知数的代数式将另一书架上书的本数表示出来。在调配问题中,调配后数量相等,即将原来多的一方多出的数量进行平分。由题设中“从甲书架拿100本书到乙书架,两架书相等”,可知甲书架原有的书比乙书架上原有的书多200本。故设乙架原有x本书,则甲架原有(x+200)本书。从乙架拿100本放到甲架上,乙架剩下的书为(x100)本,甲架书变为(x+200)+100本。又甲架的书比乙架多5倍,即是乙架的六倍,有 (x+200)+100=6(x100) x=180 x+200=380例2.某车间22名工人参加生产一种螺母和螺丝。每人每天平均生产螺丝120个或螺母200个,一个螺丝要配两个螺母,应分配多少名工人生产螺丝,多少名工人生产螺母,才能使每天生产的产品刚好配套?讲评:产品配套(工人调配)问题,要根据产品的配套关系(比例关系)正确地找到它们间得数量关系,并依此作相等关系列出方程。本题中,设有x名工人生产螺母,生产螺母的个数为200x个,则有(22x)人生产螺丝,生产螺丝的个数为120(22x)个。由“一个螺丝要配两个螺母”即“螺母的个数是螺丝个数的2倍”,有 200x=2120(22x) x=12 22x=10(4)行程问题。要掌握行程中的基本关系:路程速度时间。相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 同时不同地:甲的时间=乙的时间 甲走的路程-乙走的路程=原来甲、乙相距的路程 同地不同时;甲的时间=乙的时间-时间差 甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度静水(无风)中速度水(风)流速度;逆水(风)速度静水(无风)中速度水(风)流速度。车上(离)桥问题: 车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个车长 车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。寻找的相等关系有:路程关系、时间关系、速度关系。在不同的问题中,相等关系是灵活多变的。如相遇问题中多以路程作相等关系,而对有先后顺序的问题却通常以时间作相等关系,在航行问题中很多时候还用速度作相等关系。例某队伍450米长,以每分钟90米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为3米/秒。问往返共需多少时间?讲评:这一问题实际上分为两个过程:从排尾到排头的过程是一个追及过程,相当于最后一个人追上最前面的人;从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇。在追及过程中,设追及的时间为x秒,队伍行进(即排头)速度为90米/分=1.5米/秒,则排头行驶的路程为1.5x米;追及者的速度为3米/秒,则追及者行驶的路程为3x米。由追及问题中的相等关系“追赶者的路程被追者的路程=原来相隔的路程”,有: 3x1.5x=450 x=300 在相遇过程中,设相遇的时间为y秒,队伍和返回的人速度未变,故排尾人行驶的路程为1.5y米,返回者行驶的路程为3y米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程=总路程”有: 3y+1.5y=450 y=100故往返共需的时间为 x+y=300+100=400(秒)例2 汽车从A地到B地,若每小时行驶40km,就要晚到半小时:若每小时行驶45km,就可以早到半小时。求A、B 两地的距离。讲评:先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”。在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系。本题中,设A、B两地的路程为x km,速度为40 km/小时,则时间为小时;速度为45 km/小时,则时间为小时,又早到与晚到之间相隔1小时,故有 = 1 x = 360 例3 一艘轮船在甲、乙两地之间行驶,顺流航行需6小时,逆流航行需8小时,已知水流速度每小时2 km。求甲、乙两地之间的距离。讲评:设甲、乙两地之间的距离为x km,则顺流速度为km/小时,逆流速度为km/小时,由航行问题中的重要等量关系有:= +2 x = 96(5)工程问题。其基本数量关系:工作总量工作效率工作时间;合做的效率各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。常见的相等关系有两种:如果以工作量作相等关系,部分工作量之和=总工作量。如果以时间作相等关系,完成同一工作的时间差=多用的时间。在工程问题中,还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。例4 加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务。问乙需工作几天后甲再继续加工才可正好按期完成任务?讲评:将全部任务的工作量看作整体1,由甲、乙单独完成的时间可知,甲的工作效率为,乙的工作效率为,设乙需工作x 天,则甲再继续加工(12x)天,乙完成的工作量为,甲完成的工作量为,依题意有 +=1 x =8例5. 一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。现在三管齐开,需多少时间注满水池? 讲评:由题设可知,甲、乙、丙工作效率分别为、(进水管工作效率看作正数,排水管效率则记为负数),设小时可注满水池,则甲、乙、丙的工作量分别为,、,由三水管完成整体工作量1,有 +1 x = 5(6)溶液(混合物)问题溶液(混合物)问题有四个基本量:溶质(纯净物)、溶剂(杂质)、溶液(混合物)、浓度(含量)。其关系式为:溶液=溶质+溶剂(混合物=纯净物+杂质);浓度=100=100【纯度(含量)=100=100】;由可得到:溶质=浓度溶液=浓度(溶质+溶剂)。在溶液问题中关键量是“溶质”:“溶质不变”,混合前溶质总量等于混合后的溶质量,是很多方程应用题中的主要等量关系。例6.把1000克浓度为80的酒精配成浓度为60的酒精,某同学未经考虑先加了300克水。试通过计算说明该同学加水是否过量?如果加水不过量,则应加入浓度为20的酒精多少克?如果加水过量,则需再加入浓度为95的酒精多少克?讲评:溶液问题中浓度的变化有稀释(通过加溶剂或浓度低的溶液,将浓度高的溶液的浓度降低)、浓化(通过蒸发溶剂、加溶质、加浓度高的溶液,将低浓度溶液的浓度提高)两种情况。在浓度变化过程中主要要抓住溶质、溶剂两个关键量,并结合有关公式进行分析,就不难找到相等关系,从而列出方程。本题中,加水前,原溶液1000克,浓度为80,溶质(纯酒精)为100080克;设加x克水后,浓度为60,此时溶液变为(1000+x)克,则溶质(纯酒精)为(1000+x)60克。由加水前后溶质未变,有(1000+x)60=100080 x = 300 该同学加水未过量。设应加入浓度为20的酒精y克,此时总溶液为(1000+300+y)克,浓度为60,溶质(纯酒精)为(1000+300+y)60;原两种溶液的浓度分别为100080、20y,由混合前后溶质量不变,有(1000+300+y)60=100080+20 y=50(7)经济问题与生活、生产实际相关的经济类应用题,是近年中考数学创新题中的一个突出类型。经济类问题主要体现为三大类:销售利润问题、优惠(促销)问题、存贷问题。这三类问题的基本量各不相同,在寻找相等关系时,一定要联系实际生活情景去思考,才能更好地理解问题的本质,正确列出方程。销售利润问题。利润问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。基本关系式有:利润=销售价(收入)成本(进价)【成本(进价)=销售价(收入)利润】;利润率=【利润=成本(进价)利润率】。在有折扣的销售问题中,实际销售价=标价折扣率。打折问题中常以进价不变作相等关系。优惠(促销)问题。日常生活中有很多促销活动,不同的购物(消费)方式可以得到不同的优惠。这类问题中,一般从“什么情况下效果一样分析起”。并以求得的数值为基准,取一个比它大的数及一个比它小的数进行检验,预测其变化趋势。存贷问题。存贷问题与日常生活密切相关,也是中考命题时最好选取的问题情景之一。存贷问题中有本金、利息、利息税三个基本量,还有与之相关的利率、本息和、税率等量。其关系式有:利息=本金利率期数;(注意利率有日利率、月利率和年利率,年利率月利率12日利率365。)利息税=利息税率;本息和(本利)=本金+利息利息税。例7.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同样商品40件。如果商店销售这种商品时,要获利12,那么这种商品的销售价应定多少?讲评:设销售价每件x 元,销售收入则为(10+40)x元,而成本(进价)为(510+4012.5),利润率为12,利润为(510+4012.5)12。由关系式有(10+40)x(510+4012.5)=(510+4012.5)12 x=14.56例8.某种商品因换季准备打折出售,如果按定价七五折出售,则赔25元,而按定价的九折出售将赚20元。问这种商品的定价是多少?讲评:设定价为x元,七五折售价为75x,利润为25元,进价则为75x(25)=75x+25;九折销售售价为90x,利润为20元,进价为90x20。由进价一定,有 75x+25=90x20 x = 300例9. 李勇同学假期打工收入了一笔工资,他立即存入银行,存期为半年。整存整取,年利息为2.16。取款时扣除20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论