2019高考数学 平面解析几何第1讲直线的倾斜角斜率与直线方程分层演练文.docx_第1页
2019高考数学 平面解析几何第1讲直线的倾斜角斜率与直线方程分层演练文.docx_第2页
2019高考数学 平面解析几何第1讲直线的倾斜角斜率与直线方程分层演练文.docx_第3页
2019高考数学 平面解析几何第1讲直线的倾斜角斜率与直线方程分层演练文.docx_第4页
2019高考数学 平面解析几何第1讲直线的倾斜角斜率与直线方程分层演练文.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲 直线的倾斜角、斜率与直线方程一、选择题1已知直线l过点(1,0),且倾斜角为直线l0:x2y20的倾斜角的2倍,则直线l的方程为()A4x3y30B3x4y30C3x4y40 D4x3y40解析:选D由题意可设直线l0,l的倾斜角分别为,2,因为直线l0:x2y20的斜率为,则tan ,所以直线l的斜率ktan 2所以由点斜式可得直线l的方程为y0(x1),即4x3y402直线axbyc0同时要经过第一、第二、第四象限,则a,b,c应满足()Aab0,bc0,bc0Cab0 Dab0,bc0解析:选A由于直线axbyc0经过第一、二、四象限,所以直线存在斜率,将方程变形为yx易知0,故ab0,bc0,a是常数),当此直线在x,y轴上的截距之和最小时,a的值是()A1 B2C D0解析:选A直线方程可化为1,因为a0,所以截距之和ta2,当且仅当a,即a1时取等号5直线x2yb0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是()A2,2 B(,22,)C2,0)(0,2 D(,)解析:选C令x0,得y,令y0,得xb,所以所求三角形的面积为|b|b2,且b0,b21,所以b24,所以b的取值范围是2,0)(0,26若直线1(a0,b0)过点(1,1),则ab的最小值等于()A2 B3C4 D5解析:选C将(1,1)代入直线1,得1,a0,b0,故ab(ab)()2224,等号当且仅当ab时取到,故选C二、填空题7直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为_解析:直线l平分平行四边形ABCD的面积,则直线l过BD的中点(3,2),则直线l:yx答案:yx8过点M(3,5)且在两坐标轴上的截距互为相反数的直线方程为_解析:(1)当直线过原点时,直线方程为yx;(2)当直线不过原点时,设直线方程为1,即xya代入点(3,5),得a8即直线方程为xy80答案:yx或xy809直线l:(a2)x(a1)y60,则直线l恒过定点_解析:直线l的方程变形为a(xy)2xy60,由解得x2,y2,所以直线l恒过定点(2,2)答案:(2,2)10已知直线l:xmym0上存在点M满足与两点A(1,0),B(1,0)连线的斜率kMA与kMB之积为3,则实数m的取值范围是_解析:设M(x,y),由kMAkMB3,得3,即y23x23联立得x2x60要使直线l:xmym0上存在点M满足与两点A(1,0),B(1,0)连线的斜率kMA与kMB之积为3,则240,即m2所以实数m的取值范围是答案:三、解答题11已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(3,4);(2)斜率为解:(1)设直线l的方程为yk(x3)4,它在x轴,y轴上的截距分别是3,3k4,由已知,得(3k4)6,解得k1或k2故直线l的方程为2x3y60或8x3y120(2)设直线l在y轴上的截距为b,则直线l的方程是yxb,它在x轴上的截距是6b,由已知,得|6bb|6,所以b1所以直线l的方程为x6y60或x6y6012如图,射线OA,OB分别与x轴正半轴成45和30角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线yx上时,求直线AB的方程解:由题意可得kOAtan 451,kOBtan(18030),所以直线lOA:yx,lOB:yx设A(m,m),B(n,n),所以AB的中点C,由点C在直线yx上,且A,P,B三点共线得解得m,所以A(,)又P(1,0),所以kABkAP,所以lAB:y(x1),即直线AB的方程为(3)x2y301直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A、B两点,O为坐标原点,当|OA|OB|最小时,求l的方程解:依题意,l的斜率存在,且斜率为负,设直线l的斜率为k,则直线l的方程为y4k(x1)(k0)令y0,可得A;令x0,可得B(0,4k)|OA|OB|(4k)55549所以当且仅当k且k0,b0),则直线PQ的方程为1,所以1,(a6,4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论