




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大题精做12 函数与导数:存在、恒成立与最值问题2019广州一模已知函数(1)若,求的单调区间;(2)当时,记的最小值为,求证【答案】(1)函数的单调递减区间为,单调递增区间为;(2)见解析【解析】(1)当时,的定义域是,当时,;当时,所以函数的单调递减区间为,单调递增区间为(2)证明:由(1)得的定义域是,令,则,在上单调递增,因为,所以,故存在,使得当时,单调递减;当时,单调递增;故时,取得最小值,即,由,得,令,则,当时,单调递增,当时,单调递减,故,即时,取最大值1,12019青海联考已知函数(1)讨论函数的单调性;(2)当有最小值,且最小值不小于时,求的取值范围22019咸阳模拟设函数,(1)当时,求的单调区间;(2)求证:当时,32019东莞期末已知函数,函数(1)求函数的单调区间;(2)设,是函数的两个极值点,若,求的最小值1【答案】(1)见解析;(2)【解析】(1),当时,所以函数在上单调递增;当时,令,解得,当时,故函数在上单调递减;当时,故函数在上单调递增(2)由(1)知,当时,函数在上单调递增,没有最小值,故,整理得,即令,易知在上单调递增,且;所以的解集为,所以2【答案】(1)见解析;(2)见解析【解析】(1)当时,令,则当时,;当时,函数的单调递增区间是;单调递减区间是(2)由(1)知,当时,当时,即,当时,要证,只需证,令,由,可得,则时,恒成立,即在上单调递增,即,3【答案】(1)函数的增区间为;的减区间为;(2)【解析】(1)由题意知,的定义域为,当时,解得;当时,所以函数的增区间为;的减区间为(2)因为,从而,令,得,由于,设方程两根分别为,由韦达定理可知,设,则,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年同济大学附属东方医院胶州医院招聘人才(100人)考前自测高频考点模拟试题及答案详解(历年真题)
- 上海市人民医院医疗卫生政策趋势分析与医院应对策略
- 张家口市中医院消毒灭菌学原理与监测方法进阶试题
- 2025湖南湘潭市韶山思政教育实践中心公开招聘教师2人模拟试卷及完整答案详解
- 衡水市人民医院心电图机维护保养考核
- 沧州市人民医院脊柱内镜下椎间盘切除技术资格认证
- 上海市中医院皮秒激光技术专项考核
- 2025江苏师范大学招聘工作人员78人(第一批)模拟试卷及参考答案详解
- 2025广东省第二中医院招聘皮肤科医师2人模拟试卷及答案详解(名校卷)
- 张家口市中医院护理科研文化建设考核
- 高等数学(经济类)第5版课件:数列的极限
- 2025年上海市高考英语热点复习:六选四句子还原之说明文(上)
- 老年病人误吸预防及护理
- 吉林地区普通高中2023-2024学年高三年级上学期数学第一次模拟试卷(含答案)
- 初中物理实验探究式教学策略研究结题报告
- 安徽省宣城市2023-2024学年高二上学期期末考试 英语 含答案
- 2024年秋季新教材三年级上册PEP英语教学课件:含视频音频U3-第1课时-A
- 公安涉警舆情课件
- 医院培训课件:《类风湿关节炎的治疗与康复》
- DB34∕T 3790-2021 智慧药房建设指南
- 实验小学六年级上学期素养竞赛语文试卷(有答案)
评论
0/150
提交评论