




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、问题的提出,观察上节例1,此时积分与路线无关.,观察上节例2,柯西黎曼方程, 故而在复平面内处处不解析.,由于不满足,3.2 柯西积分定理,一、问题的提出,二、基本定理,四、原函数,三、复合闭路定理,由以上讨论可知, 积分是否与路线有关, 可能决定于被积函数的解析性及区域的连通性.,受此启发,柯西(Cauchy)于1825年给出如下定理:,观察上节例,说明积分与路线有关,二、柯西古萨特基本定理,1、柯西积分定理单连通区域,1851年,黎曼在附加假设“ 在D内连续”的条件下,得到一个如下的简单证明,黎曼证明,且满足CR方程:,由格林公式:,定理又称为柯西古萨特定理.,内连续”的假设,发表上述定理新的证明方法因此,,1900年,法国数学家古萨(Goursat) 免去“ 在D,解析函数在单连通域内的积分与路线无关,由定理得,即:,如图,,则,关于定理的说明:,(1) 如果曲线 C 是区域 的边界,(2) 如果曲线 C 是区域 的边界,定理仍成立.,例1,解,根据柯西古萨定理, 有,说明:本题若用复积分的计算公式,将很复杂,例2,解,根据柯西古萨定理得,都在曲线,三、复合闭路定理,1. 闭路变形原理,(闭路变形原理),解析函数沿闭曲线的积分, 不因闭曲线在区域内作连续变形而改变它的值.,闭路变形原理,说明: 在变形过程中曲线不经过函数 f(z) 的不解析的点.,从而有,推导过程:,那么,即:复变函数沿多连通区域外边界线逆时针方向的积分等于沿所有内边界线逆时针方向的积分之和。,2. 复合闭路定理,多连通区域的柯西定理,例3,解,圆环域的边界线构成一条复合闭路,根据复合闭路定理,例4,解,由闭路变形原理,此结论非常重要, 用起来很方便, 因为C不必是圆, a也不必是圆的圆心, 只要a在简单闭曲线C内即可.,重要积分公式,解(方法一),依题意知,例5,由上例的结论,,(方法二),根据复合闭路定理,分割包围!,柯西积分定理,重要积分公式,柯西积分定理,重要积分公式,四、原函数,由柯西积分定理,,1. 变上限的积分:,解析函数在单连通域内的积分与路线无关,则,2、定理一,3、原函数之间的关系:,它就有无穷多个原函数,那么,其全体原函数可表示为,4、定理二,(复积分的Newton-Leibnitz公式),例6,解,例7,解,例8,解,使用:“分部积分法”,课堂练习,答案,小结与思考,1. 通过本课学习, 重点掌握柯西积分定理:,并注意定理成立的条件.,2.本课所讲述的复合闭路定理与闭路变形原理是复积分中的重要定理, 掌握并能灵活应用它是本章的难点.,常用结论:,3.本课介绍了原函数、的定义以及牛顿莱布尼兹公式. 在学习中应注意与高等数学中相关内容相结合, 更好的理解本课内容.,1. 应用柯西古萨定理应注意什么?,2. 解析函数在单连通域内积分的牛顿莱布尼兹公式与实函数定积分的牛顿莱布尼兹公式有何异同?,思考题,思考题答案,1. 应用柯西古萨定理应注意什么?,(1) 注意定理的条件“单连通域内处处解析”.,(2) 注意定理的不能反过来用.,2. 解析函数在单连通域内积分的牛顿莱布尼兹公式与实函数定积分的牛顿莱布尼兹公式有何异同?,两者的说法和结果是类似的.,两者对函数的要求差异很大.,Goursat,Born: 21 May 1858 in Lanzac, Lot, Fra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海数字城市规划研究中心公开招聘考前自测高频考点模拟试题及答案详解(必刷)
- 2025安徽安庆医药高等专科学校面向校园招聘21人模拟试卷附答案详解(考试直接用)
- 2025甘肃武威市古浪县八步沙林场招聘财会、水利专业人员3人模拟试卷及答案详解(典优)
- 2025内蒙古巴彦淖尔市杭锦后旗奋斗中学自主招聘教师3人模拟试卷及一套答案详解
- 2025江西吉安市吉州区社会福利院招聘编外工作人员1人(三)考前自测高频考点模拟试题及参考答案详解一套
- 2025年东营港经济开发区卫生类事业单位急需紧缺人才引进(11人)模拟试卷及完整答案详解一套
- 湖南有色金属研究院有限责任公司2025年招聘笔试历年参考题库附带答案详解
- 浙江国企招聘2025年绍兴市国控集团有限公司高层次人才招聘5人笔试历年参考题库附带答案详解
- 吉水县某公司2025年面向社会公开招聘销售专员信息化专员安排及通过笔试历年参考题库附带答案详解
- 2025内蒙古赤峰市红山区崇文实验学校教师招聘14人模拟试卷及答案详解(网校专用)
- 第三届全国技能大赛竞赛-无人机驾驶(植保)选拔赛备考试题库(附答案)
- 市场营销合同协议书
- 加快建设教育强国-2025年上半年形势与政策
- 异常子宫出血护理查房
- 2025年各地高三语文2月试卷【语言文字运用题】汇集练附答案解析
- 销售部组织体系及管理制度
- 二次函数综合压轴题(共55题)(原卷版)
- 公司建筑施工安全风险辨识分级管控台账
- 神经外科住院医师培训工作总结
- 深圳市房屋租赁合同书(空白)
- 《腹膜透析护理》课件
评论
0/150
提交评论