《气相色谱沈晓芳》PPT课件.ppt_第1页
《气相色谱沈晓芳》PPT课件.ppt_第2页
《气相色谱沈晓芳》PPT课件.ppt_第3页
《气相色谱沈晓芳》PPT课件.ppt_第4页
《气相色谱沈晓芳》PPT课件.ppt_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 气相色谱,色谱分析,沈晓芳,第一节 概述,气相色谱仪流程图,1、载气系统 2、进样系统 3、分离系统 4、检测系统 5、控制系统,一、气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体 净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑 对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂 质。 压力表:多为两级压力指示:第一级,钢瓶压力(总是高于常压。对填 充柱:10-50 psi;对开口毛细柱:1-25 psi);第二级,柱头压 力指示; 流量计:在柱头前使用转子流量计(Rotometer),但不太准确。通常在 柱后,以皂膜流量计(Soap-bubble meter)测流速。许多现代仪 器装置有电子流量计,并以计算机控制其流速保持不变。,1. 气路系统,*气相色谱对载气的基本要求: (1)纯净 通过活性炭或分子筛净化器,除去载气中的水分、氧等 有害杂质。如FID,要求去除含碳有机物。 (2)稳定 采用稳压阀:入口压力0.6 MPa,出口0.05-0.3 Mpa。 再接稳流阀:入口压力0.25 MPa,出口0.02-0.2 Mpa。,(3)常用的载气: 氮气 氢气 氦气,2、进样系统 包括进样装置和气化室。 进样通常用微量注射器和进样阀将样品引入液体样品引入后需要瞬间气化。气化在气化室进行。 对汽化室的要求是: (1)体积小; (2)热容量大;50到500度,250度以上要注意 (3)对样品无催化作用(气化室加玻璃衬管),进样器,1. 阀进样器-气体样品的进样 通常用六通阀进样器,其结构如下图所示。在采样位置时,载气经1流入,直接从2流出,到达色谱柱,气体样品从进样口5流入到接在通道3和6上的定量管7中,并从通道4流出。当六通阀从采样位置旋转 60度至进样位置时,载气经1和6通道与定量管7连通,将定量管中的样品从通道3和2带至色谱柱中。,2. 分流进样器毛细管柱液体样品的进样 由于毛细管柱样品容量在纳升级,直接导入如此微量样品很困难,通常采用分流进样器,其结构如下图所示。进入气化室的载气与样品混合后只有一小部分进入毛细管柱,大部分从分流气出口排出,分流比可通过调节分流气出口流量来确定,常规毛细管柱的分流比在 1:50-1:500。,3、分离系统,4. 控制温度系统,在气相色谱测定中,温度是重要的指标,它直接影响色谱柱的选择分离、检测器的灵敏度和稳定性。 控制温度主要指对色谱柱炉,气化室,检测器三处的温度控制。 色谱柱的温度控制方式有恒温和程序升温二种。对于沸点范围很宽的混合物,往往采用程序升温法进行分析。 程序升温指在一个分析周期内柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的。,程 序 升 温 与 恒 温 对 分 离 的 影 响 比 较,5、检测系统,一、热导检测器( Thermal Conductivity Detector, TCD),二、氢火焰离子化检测器(Flame Ionization Detector,FID),三、电子俘获检测器(Electronic capture Detector,ECD),四、火焰光度检测器(Flame Photometric Detector,FPD),第二节 色谱柱,一 色谱柱的分类 1 按柱结构分类,填充柱,常规填充柱 薄膜球状担体填充柱 毛细管填充柱,开管柱,壁涂开管柱(WCOT) 涂载体开管柱(SCOT) 多孔层开管柱(PLOT),2 按固定相分类,(1)气液色谱柱 占总数的70%80%,为溶解分配,等温线呈线性关系,符合高斯分配。固定液种类多,选择性好。适用范围较广。,(2)气固色谱柱 由于气固色谱吸咐剂吸热系数差别较大,适合于分离低沸点气态物,但因吸咐等温线是非线性的,吸咐剂种类较少,应用范围较窄。,(3)气固液色谱柱 用吸咐剂和液体相互协调结合的物质作固定相,它既是一种液体与胶质颗粒之间化合后的物质作为固定相,又可以是一种吸咐剂表面被液体渗透。高分子多孔小球GDX即为此类型。,气相色谱固定相,1气固色谱固定相 种类: 活性炭:有较大的比表面积,吸附性较强。 活性氧化铝:有较大的极性。适用于常温下O2、N2、CO、CH4、C2H6、C2H4等气体的相互分离。CO2能被活性氧化铝强烈吸附而不能用这种固定相进行分析。 硅胶:与活性氧化铝大致相同的分离性能,除能分析上述物质外,还能分析CO2、N2O、NO、NO2等,且能够分离臭氧。,气固色谱固定相,分子筛: 碱及碱土金属的硅铝酸盐(沸石),多孔性。如3A、4A、5A、10X及13X分子筛等(孔径:埃)。常用5A和13X(常温下分离O2与N2)。除了广泛用于H2、O2、N2、CH4、CO等的分离外,还能够测定He、Ne、Ar、NO、N2O等。 高分子多孔微球(GDX系列): 新型的有机合成固定相(苯乙烯与二乙烯苯共聚)。 型号:GDX-01、-02、-03等。适用于水、气体及低级醇的分析。,气固色谱固定相的特点,(1)性能与制备和活化条件有很大关系; (2)同一种固定相,不同厂家或不同活化条件,分离效果差异较大; (3)种类有限,能分离的对象不多; (4)使用方便。,2气液色谱固定相,气液色谱固定相 固定液 + 担体(支持体) : 固定液在常温下不一定为液体,但在使用温度下一定呈液体状态。 固定液的种类繁多,选择余地大,应用范围不断扩大。 担体:化学惰性的多孔性固体颗粒,具有较大的比表面积。 可以作为担体使用的物质应满足以下条件: 比表面积大,孔径分布均匀; 化学惰性,表面无吸附性或吸附性很弱,与被分离组份不起反应; 具有较高的热稳定性和机械强度,不易破碎; 颗粒大小均匀、适度。一般常用6080目、80100目。,担体(硅藻土),红色担体: 孔径较小,表孔密集,比表面积较大,机械强度好。适宜分离非极性或弱极性组分的试样。 缺点是表面存有活性吸附中心点。 白色担体: 煅烧前原料中加入了少量助溶剂(碳酸钠)。 颗 粒疏松,孔径较大。表面积较小,机械强度 较差。但吸附性显著减小,适宜分离极性组分的试样。,表5-1填充柱气液色谱担体一览表,2. 固定液及其选择 对固定液的要求: a) 热稳定性好、蒸汽压低流失少; b) 化学稳定性好不与其它物质反应; c) 对试样各组分有合适的溶解能力分配系数K 适当; d) 对各组分具有良好的选择性。,固定液与组分的作用力: a) 色散力非极性分子之间(瞬时偶极之间静电吸引); b) 诱导力极性与非极性分子之间(偶极与瞬时偶极之间静 电吸引); c) 取向力极性与极性分子之间(偶极与偶极之间静电吸引) d) 氢键力强度介于化学键力和范德华力之间的静电吸引, 亦属取向力。 前三种统属范德华力,后者属特殊范德华力。,固定液的选择: 固定液的特性是指其极性和选择性。 相对极性P:规定非极性固定液角鲨烷的极性为0,强极性固定液,-氧二丙腈的极性为100,以物质对正丁烷-丁二烯或环已烷-苯在角鲨烷、,-氧二丙腈及待测固定液上分离得到相对保留值,并取对数: 从下列公式求得待测固定液的相对极性Px: 其中q1, q2, qx分别表示物质对在角鲨烷、,-氧二丙腈和待测固定液的相对保留值。Px在0100之间,每20单位为一级,即将极性分为5级:0, +1(非极性);+1, +2(弱极性);+3(中等极性;+4, +5(强极性),固定液分类及选择:,固定液选择:按“相似相溶”原理选择固定液。 非极性组分非极性固定液沸点低的物质先流出; 极性物质极性固定液极性小的物质先流出; 各类极性混合物极性固定液极性小的物质先流出; 氢键型物质氢键型固定液不易形成氢键的物质先流出; 复杂混合物两种或以上混合固定液,6 毛细管柱气相色谱(Capillary GC) 毛细管柱的发明使得气相色谱分析发生了革命性的变化! 50 年代初,主要进行填充柱的理论和应用研究,并开始进行非填充柱(内径为十分之几毫米)的理论可行性研究。 1956 年Golay正式提出了非填充柱(空心柱)的理论并制作出效率极高毛细管柱;次年发表了该研究论文。 50 年代后期,一些研究人员都制成了各类毛细管柱,经测定,一些毛细管的理论塔板数可达到300,000! 然而,自毛细管柱发明以来,20多年都没有广泛应用,主要是因为:1)柱容量小;2)柱强度小;3)样品引入及管与检测器的连结问题;3)固定液涂渍的重现性不好;4)寿命短;5)柱易堵塞;6)专利1977年才过期。 70 年代后期,以上问题大多得到解决,毛细管柱的应用越来越多。 1987 年,荷兰Chrompack Inter. Coporation制成了世界最长、理论塔板数最多的熔融石英毛细管柱(2100m长,内径0.32mm,内壁固定液厚度0.1m,理论塔板数超过3,000,000)并被载入吉力斯世界记录。,一、毛细管气相色谱仪器 毛细管气相色谱仪器与填充柱色谱仪类似。只是: 在进样口增加了分流/不分流装置解决了柱容量小的问题; 以及在柱后增加了一个尾气吹扫气路减少了柱与检测器连结处的死体积过大的问题; 通常采用程序升温技术。,二、毛细管柱 1. 分类 填充型:先在玻璃管内填充疏松载体,再拉制成毛细管,最后再涂渍固定液。 开管型:按固定液涂渍方法不同,可分为 (i) 涂壁开管柱(Wall-coated open tubular, WCOT) 管内壁经处理后,直接涂渍固定液; 管内壁经处理后,将固定液引入到管壁,再经高温处理,使其交联(Cross- lined)至管壁高效、耐高温、抗溶剂冲刷。 管内壁经处理后,将固定液以化学键合(Bonded)的方式引入到管壁或预先涂 渍的硅胶上高热稳定性。 (ii) 载体涂渍开管柱(SCOT): 管内壁经处理后,先涂载体,再涂固定液液膜厚,因而柱容量大。 (iii) 多孔层开管柱(Porous layer coated open tubular, PLOT) 管内壁涂渍一层多孔吸附剂颗粒,不涂固定液,实际上是毛细管气固色谱柱。 以上开管柱玻璃材料已被外涂聚酰亚胺保护层的熔融石英管(含金属氧化合物 少、管壁更薄,因而不与待测物作用、柔韧性好、强度高、更易弯曲)所取代。 此外,现在也发展了一种大口径开管柱(Megabore colum, 0.53mm i.d.),可容许更大样品量(类似于填充柱),尽管柱效低些,但仍大大高于填充柱。,2. 毛细管柱特点 (i) 总柱效高:尽管毛细管柱效比填充柱大,但仍处于同一数量级。然而毛细管柱为开管柱,可以做得更长(n大)。此外,柱管中心是空的,因此涡流扩散项不存在(A=0),谱带展宽小,因而总柱效高。 (ii) 分析速度快:相比率(Vm/Vs)大,分配快,有利于提高柱效;加上保留因子k小,渗透性好,因而分析速度快; (iii) 柱容量小:进样量小(对单个组分而言,约0.5 ug 即达极限),需采用分流技术并使用更高灵敏度的检测器;这是毛细管柱最大的不足,尤其对痕量分析来说极为不利,而且宽沸程的样品在分流后会失真。近年来多采用柱容量较大的、不需分流的大口径毛细管柱,该种柱内径达0.53 mm, 液膜厚度约1 um(小口径柱为0.2-0.3 um),3 进样系统要求 由于毛细管柱的内径很小,固定液只有几十mg,进样量极小,一般为10-310-2l。只能用分流器进样。要求进样器分流前后的试样组成及浓度都不变。,4 检测器要求 由于进样量一般为10-510-6g。1%含量为10-710-8g。因此只能用高灵敏度检测器,最常用的是FID。另外由于柱流速很低,一般为1ml/min,所以在柱出口端加尾气保证氢焰正常燃烧。,五、检测器 气相色谱检测器种类繁多,本节将介绍最为常用的几种检测器: 1. 热导检测器(Thermal conductivity detector, TCD); 2. 氢火焰离子化检测器(Flame ionized detector, FID); 3. 电子捕获检测器(Electron capture detector, ECD); 4. 火焰光度检测器(Flame photometric detector, FPD); 5. 氮磷检测器(NPD)也称热离子检测器(Thermionic detector, TID); 6. 原子发射检测器(Atomic emission Detector, AED) 7. 硫荧光检测器(Sulfur chemiluminescence Detector, SCD) 根据检测器的响应原理,可将其分为浓度型和质量型检测器。 浓度型:检测的是载气中组分浓度的瞬间变化,即响应值与浓度成正比。 质量型:检测的是载气中组分进入检测器中速度变化,即响应值与单位时间进入检测器的量成正比。,工作过程(四臂): 1)在只有载气通过时,四个臂的温度都保持不变,电阻值也不变。此时,调节电路电阻使电桥平衡,即R1*R4=R2*R3,AB两端无电压信号输出; 2)当有样品随载气进入两个样品臂时,此时热导系数发生变化,或者说,测量臂的温度发生变化,其电阻亦发生变化,电桥失去平衡,AB两端有电压信号输出。当载气和样品的混合气体与纯载气的热导系数相差越大,则输出信号越强。 特点: 对任何气体均可产生响应,因而通用性好,而且线性范围宽、价格便宜、应用范围广。但灵敏度较低。,影响热导检测器(TCD)灵敏度的因素: 1)桥电流 i:i 增加热敏元件温度增加元件与池体间温差增加气体热传导增加灵敏度增加。但 i 过大,热敏元件寿命下降。电流通常选择在100200 mA之间(N2作载气,100150 mA;H2作载气,150200 mA)。 2)池体温度:池体温度低,与热敏元件间温差大,灵敏度提高。但温度过低,可使试样凝结于检测器中。通常池体温度应高于柱温。 3)载气种类:载气与试样的热导系数相差越大,则灵敏度越高。通常选择热导系数大的H2 和Ar 作载气。用N2作载气,热导系数较大的试样(如甲烷)可出现倒峰。 4)热敏元件阻值:阻值高、电阻温度系数大(随温度改变,阻值改变大,或者说热敏性好)的热敏元件,其灵敏度高。 综述:较大的桥电流、较低的池体温度、低分子量的载气以及具有大的电阻温度系数的热敏元件可获得较高的灵敏度。,2. 火焰离子化检测器(FID) 又称氢焰离子化检测器。原理:含碳有机物在H2-Air火焰中燃烧产生碎片离子,在电场作用下形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。 结构:主体为离子室,内有石英喷嘴、发射极(极化极,此图中为火焰顶端)和收集极。 工作过程:来自色谱柱的有机物与H2-Air混合并燃烧,产生电子和离子碎片,这些带电粒子在火焰和收集极间的电场作用下(几百伏)形成电流,经放大后测量电流信号(10-12 A)。,火焰离子化机理: 有关机理并不十分清楚,但通常认为是化学电离过程:有机物燃烧产生自由基,自由基与O2作用产生正离子,再与水作用生成H3O+。 以苯为例:,影响火焰离子化检测器(FID)灵敏度的因素: 1)载气和氢气流速:通常以N2为载气,其流速主要考虑其柱效能。但也要考虑其流速与H2流速相匹配。一般N2:H2 = 1:11:1.5;当以He为载气时,则氢气流速= 1/3H2+10mL。 2)空气流速:流速越大。灵敏度越大,到一定值时,空气流速对灵敏度影响不大。一般地,H2:Air = 1:10。 3)极化电压:在50V以下时,电压越高,灵敏度越高。但在50V以上,则灵敏度增加不明显。通常选择100 300V的极化电压。 4)操作温度:比柱的最高允许使用温度低约 50oC(防止固定液流失及基线漂移),火焰离子化检测器(FID)特点: 1)灵敏度高(10-13g/s); 2)线性范围宽(107数量级); 3)噪声低; 4)耐用且易于使用; 5)为质量型检测器,色谱峰高取决于单位时间内引入检测器中组分的质量。 在样品量一定时,峰高与载气流速成正比。因此在用峰高定量时,应控 制流速恒定! 6)对无机物、永久性气体和水基本无响应(不足?),因此FID特别适于水中和大气中痕量有机物分析或受水、N和S的氧化物污染的有机物分析。 7)对含羰基、羟基、卤代基和胺基的有机物灵敏度很低或根本无响应。 8)样品受到破坏。,电子捕获检测器(ECD)特点: 1)响应电流i与浓度c是非线性的,即, 该式类似于比尔定律。其中,i0为基流,K 为电子吸收系数(不同物质K值不同)。 2)对如卤素基、过氧基、醌基、硝基等含电负性的功能团的分子具有极高的选择性和灵敏度;但对含酰胺基和羟基的化合物以及烃类物质不灵敏。 3)与FID相比,ECD对样品的破坏不大; 4)线性范围为两个数量级,相对FID来说,这不算大; 5)要求载气纯度要高(99.99%),否则杂质会降低基流;(通常将载气通入480oC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论