《用函数极值与导数》PPT课件.ppt_第1页
《用函数极值与导数》PPT课件.ppt_第2页
《用函数极值与导数》PPT课件.ppt_第3页
《用函数极值与导数》PPT课件.ppt_第4页
《用函数极值与导数》PPT课件.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.2 函数的极值与导数,f (x)0,f (x)0,1.定义:一般地,设函数y=f(x)在某个区间(a,b)内有导数,如果在 这个区间内f/(x) 0,那么函数y=f(x) 在为这个区间内 的增函数;如果在这个区间内f/(x)0,那么函数y=f(x) 在为这个区间内的减函数.,一、知识回顾:,如果在某个区间内恒有 ,则 为常数.,2.求函数单调性的一般步骤,求函数的定义域;,求函数的导数 f/(x) ;,解不等式 f/(x)0 得f(x)的单调递增区间; 解不等式 f/(x)0 得f(x)的单调递减区间.,问题:如图表示高台跳水运动员的高度 随时间 变化的函数 的图象,单调递增,单调递减,归纳: 函数 在点 处 ,在 的附近, 当 时,函数h(t)单调递增, ; 当 时,函数h(t)单调递减, 。,探究,(3)在点 附近, 的导数的符号有什么规律?,(1)函数 在点 的函数值与这些点附近的 函数值有什么关系?,(2)函数 在点 的导数值是多少?,(图一),问题:,探究,(图一),极大值f(b),点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.,点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.,极小值点、极大值点统称极值点,极大值和极小值统称为极值.,极小值f(a),二、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0) 是函数f(x)的一个极大值, 记作y极大值= f(x0);,如果对X0附近的所有点,都有f(x)f(x0),则f(x0) 是函数f(x)的一个极小值,记作y极小值= f(x0);,函数的极大值与极小值统称 为极值.,使函数取得极值的点x0称为极值点,思考:极大值一定大于极小值吗?,(1)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内最大或最小。,(2)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。,(3)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。,课后练习1.如图是函数 的图象,试找出函数 的 极值点,并指出哪些是极大值点,哪些是极小值点?,随堂练习,答:,x1,x3,x5,x6是函数y=f(x)的极值点,其中x1,x5是函 数y=f(x)的极大值点,x3,x6函数y=f(x)的极小值点。,导数值为0的点一定是函数的极值点吗?,导数值为0的点一定是函数的极值点吗?,是 为可导函数 的极值点的必要不充分条件。,x,y,O,y = x3,(1)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内最大或最小。,(2)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。,(3)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。,(4) 是 为可导函数 的极值点的必要不充分条件。,一般地,当函数f(x)在x0处连续时,判别f(x0)是 极大(小)值的方法是: (1)如果在x0附近的左侧f(x) 0 , 右侧f(x) 0 ,那么, f(x0)是极大值; (2)如果在x0附近的左侧f(x) 0 , 右侧f(x) 0 ,那么, f(x0)是极小值。,2、极值的判别方法,下面分两种情况讨论: (1)当 ,即x2,或x-2时;,(2)当 ,即-2 x2时。,例4:求函数 的极值.,解:,当x变化时, 的变化情况如下表:,当x=-2时, f(x)的极大值为,令,解得x=2,或x=-2.,当x=2时, f(x)的极小值为,巩固练习:,1、求函数 的极值,课堂总结:,一、方法: (1)确定函数的定义域 (2)求导数f(x) (3)求方程f(x) =0的全部解 (4)检查f(x)在f(x) =0的根左,右两边值的符号,如果左正右负 (或左负右正),那么f(x)在这个根取得极大值(或极小值) 二、通过本节课使我们学会了应用数形结合法去求函数的极 值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论