




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间向量 在立体几何中的应用,前段时间我们研究了用空间向量求角(包括线线角、线面角和面面角)、求距离(包括线线距离、点面距离、线面距离和面面距离),今天我来研究如何利用空间向量来解决立体几何中的有关证明及计算问题。,一、 用空间向量处理“平行”问题,R,例1.在正方体ABCD-A1B1C1D1中,P、Q分别是A1B1和BC上的动点,且A1P=BQ,M是AB1的中点,N是PQ的中点. 求证: MN平面AC.,法() 作PP1AB于P1,作MM1 AB于M1,连结QP1, 作NN1 QP1于N1,连结M1N1,N1,M1,P1,NN1PP1 MM1AA1,z,y,x,o,证明:建立如图所示的空间直角坐标系o-xyz,设正方形边长为2,又A1P=BQ=2x,则P(2,2x,2)、Q(2-2x,2,0) 故N(2-x, 1+x, 1),而M(2, 1, 1),例2.在正方体ABCD-A1B1C1D1中,求证: 平面A1BD平面CB1D1,于是平面A1BD平面CB1D1,o,z,y,x,(2)证明:建立如图所示的空间直角坐标系o-xyz,同理可得平面CB1D1的法向量为,则显然有,o,z,y,x,例3.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是A1B1、B1C1、C1D1、D1A1的中点. 求证: 平面AEH平面BDGF,故得平面AEH平面BDGF,o,z,y,x,略证:建立如图所示的空间直角坐标系o-xyz,则求得平面AEF的法向量为,求得平面BDGH的法向量为,显然有,故 平面AEH平面BDGF,二、 用空间向量处理“垂直”问题,二、 用空间向量处理“垂直”问题,F,E,X,Y,Z,例4,练习1,证明:,分别以 为坐标向量建立空间直角坐标系,例6:如图,在正三棱柱ABC-A1B1C1中,AB=AA1/3=a,E、F分别是BB1、CC1上的点,且BE=a,CF=2a 。 求证: 面AEF面ACF。,A,F,E,C1,B1,A1,C,B,x,z,y,不防设 a =2,则A(0,0,0),B(3 ,1,0)C(0,2,0),E( 3,1,2) F(0,2,4),AE=( 3,1,2)AF=(0,2,4),因为,x轴面ACF 所以 可取面ACF的法向量为m=(1,0,0),设n=(x,y,z)是面AEF的法向量,则,A,F,E,C1,B1,A1,C,B,z,y,x,nAE=3x+y+2z=0,nAF=2y+4z=0,x=0,y= -2z,令z=1得, n=(0,-2,1),显然有m n=0,即,mn,面AEF面ACF,证明:如图,建立空间直角坐标系A-xyz ,,求证:平面MNC平面PBC;,已知ABCD是矩形,PD平面ABCD,PDDCa,AD ,M、N分别是AD、PB的中点。,练习2,小结:,利用向量的有关知识解决一些立体几何的问题,是近年来很“热”的话题,其原因是它把有关的“证明”转化为“程序化的计算” 。本课时讲的内容是立体几何中的证明“线面平行、垂直”的一些例子,结合我们以前讲述立体几何的其他问题(如:求角、求距离等),大家从中可以进一步看出基中一些解题的“套路”。,利用向量解题 的关键是建立适当的空间直角坐标系及写出有关点的坐标。,用代数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省阜阳市颍州区2022-2023学年高三下学期高考第三次模拟考试思想政治试题及答案
- 2025 年小升初上海市初一新生分班考试语文试卷(带答案解析)-(部编版)
- 2025聘用合同简易样本
- 湖南省长沙市雅礼雨花中学2024-2025学年八年级下学期期末考试数学试题(含部分答案)
- 2025年吉林省吉林市中考物理一模试卷-自定义类型(含答案)
- 维修汽车服务合同范本
- 瑞士租车服务合同范本
- 铺面租房合同范本
- 特许代理销售合同范本
- 购买金戒指合同范本
- 某中央空调机房拆除施工方案
- 《儿童孟氏骨折》课件
- 电力系统绝缘保护 过电压防护 电力系统内部过电压及防护
- 《保障农民工工资支付条例》宣传册
- 《用户体验的要素》课件
- 基于现代文献探讨经方治疗冠心病(胸痹心痛)的处方用药规律研究演示稿件
- 2023年贵州六盘水市盘州市考调事业单位人员60人笔试参考题库(共500题)答案详解版
- 一元二次不等式及解法
- 桩基工程验收监理质量评估报告
- 钢管中频感应加热过程的有限元分析
- 2022年脓毒血症指南解读(更新)
评论
0/150
提交评论