




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节 多元函数,一、空间解析几何简介,二、多元函数的概念,三、二元函数的极限与连续,第四章 多元函数微积分,横轴,纵轴,竖轴,定点,空间直角坐标系,一、空间直角坐标系,过空间一点 引三条两两相互垂直的数轴,就构成空间直角坐标系.,三个坐标轴的正方向符合右手系.即当右手的四个手 指从 轴正向转过 的角度指向 轴正向时,大拇指所指的方向就是 轴的正向.,这三个坐标平面将空间分成八个部分,每一部分称为一个卦限.,每两个坐标轴所在的平面 、 、 称为坐标平面.,如下图所示:,面,面,面,空间直角坐标系共有八个卦限,空间的点,有序数组,特殊点的表示:,坐标轴上的点,坐标面上的点,一一对应,空间两点间距离,特殊地:若两点分别为,解 设与二定点A和B等距离的点为,例4-1 求与二定点 和 等距离的点的轨迹方程.,依题意,所以,化简,得,球面方程,在空间与一定点 的距离为一定值 的点的轨迹称为球面.,设 为球面上的任意一点,则,因此球面方程为,即,特别,当球心在原点时,球面方程为,常见的曲面方程,圆柱面,椭圆抛物面,双曲抛物面(马鞍面),圆锥面,观察两个例子,例4-3 一定质量的理想气体,它的压强P和体积V、绝对温度T之间的关系是,(其中R是比例常数),这两个例子的实质是依赖于多个变量的函数关系.,二、多元函数的概念,例4-2 病人在进行补液时,补液量N与正常血容量V、正常红细胞比容(单位容积血液中红细胞所占容积百分比)A及病人红细胞比容B的关系为,类似地可定义三元函数,其中 、 为自变量, 为因变量,点集 称为函数的定义域.,二元及二元以上的函数称为多元函数. 元函数记为,定义4-1 设有三个变量 、 、 , 是 平面上的一个点集.如果对于任意点 ,变量 按照一定的法则总有唯一确定的值和它对应,则称变量 是变量 、 的二元函数,记作,例4-4 求 的定义域.,解 所求定义域为,自变量 的取值范围称为函数的定义域.,无界开区域,解 所求定义域为,例4-5 求 的定义域.,有界闭区域,解 要使函数有意义,必须同时满足,例4-6 求 的定义域.,所求定义域为,有界闭区域,二元函数 的图形,设函数的定义域为 ,对于任意取定的 ,对应的函数值为 ,这样,以 为横坐标、 为纵坐标、 为竖坐标在空间就确定一点 ,当 取遍 上一切点时,得到一个空间点集,这个点集称为二元函数的图形.,注意:二元函数的图形通常是一张曲面.,三、二元函数的极限与连续,定义4-2 设函数 在点 的某一邻域内有定义(点 可以除外).如果当 沿任何路径趋近于 时,函数 无限趋近于一个常数 ,则称 当 时 ,以 为极限,记作,(2)定义中 的方式是任意的.,1.二元函数的极限,或,例4-7 求极限,多元函数的极限可以应用一元函数求,极 限 的 法 则,解,例4-8 证明,解 因为,又因为,所以,例4-9 证明 不存在,当k取不同的值时,所得的值不同,证明 当 沿曲线 趋于 时,所以 不存在,2.二元函数的连续性,定义4-3 如果二元函数 满足,则称函数 在点 处连续.,如果 在区域D内的每一点都连续,则称函数 在区域D内连续.函数的不连续点叫做间断点.,所以函数在(0,0)处间断,例4-11 求函数 的间断点.,解 函数在圆周 上函数没意义,所以圆周上 的点都是函数的间断点.,二元初等函数:由二元多项式及基本初等函数经过有限次的四则运算和复合运算所构成的可用一个式子所表示的二元函数叫二元初等函数,与一元函数类似,关于二元函数的连续性有以下结论:,(1)有限个连续函数的和、差、积仍为连续函数;,(2)在分母不为零处,连续函数的商仍为连续函数;,(3)连续函数的复合函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025赤峰环保投资有限公司招聘3人模拟试卷及参考答案详解1套
- 2025年智能制造的工业自动化智能化
- 2025年智能音箱的智能家居控制中心
- 2025年海洋能发电技术设备市场供需与竞争格局报告
- 2025广西河池市巴马瑶族自治县消防救援大队招录3人考前自测高频考点模拟试题及1套完整答案详解
- 2025广东深圳市宝安区鹏晖中英文学校急聘生物教师1人考前自测高频考点模拟试题及答案详解(有一套)
- 2025年江西省省直事业单位招聘工作人员笔试违纪违规处理意见考前自测高频考点模拟试题附答案详解
- 2025年长春急救中心公开招聘编外聘用制工作人员(10人)考前自测高频考点模拟试题及完整答案详解
- 2025年福建省泉州市晋江市首峰中学招聘1人考前自测高频考点模拟试题有完整答案详解
- 2025河南洛阳市西工区第一批招聘公益性岗位人员100名考前自测高频考点模拟试题附答案详解
- 结肠癌根治术后护理
- 《婚姻家庭辅导》课件
- 2024年共青团入团考试题【附答案】
- 新统计法培训
- 养老院有限空间环境安全管理制度
- 保证食品安全的规章制度清单
- GB/T 30661.10-2024轮椅车座椅第10部分:体位支撑装置的阻燃性要求和试验方法
- 《环境保护法讲座》课件
- 业务运营岗位招聘笔试题及解答(某大型国企)2025年
- 全套教学课件《工程伦理学》
- 高中文言文基础知识单选题100道及答案解析
评论
0/150
提交评论