




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
动点特殊四边形专题1.探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)已知点M(2,1),N(3,5),则线段MN长度为 ;直接写出以点A(2,2),B(2,0),C(3,1),D为顶点的平行四边形顶点D的坐标: ;拓展:(3)如图3,点P(2,n)在函数(x0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使PEF的周长最小,简要叙述作图方法,并求出周长的最小值2.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线过点B,C两点,且与x轴的一个交点为D(2,0),点P是线段CB上的动点,设CP=t(0t10)(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PEBC,交抛物线于点E,连接BE,当t为何值时,PBE=OCD?(3)点Q是x轴上的动点,过点P作PMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值3.如图,抛物线 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MNx轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标4. 如图,已知抛物线过点,过定点的直线与抛物线交于,两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)当点在抛物线上运动时,判断线段与的数量关系(、),并证明你的判断;(3)为轴上一点,以为顶点的四边形是菱形,设点,求自然数的值;(4)若,在直线l下方的抛物线上是否存在点,使得的面积最大,若存在,求出点的坐标及的最大面积,若不存在,请说明理由.5.如图,抛物线经过点,与轴负半轴交于点,与轴交于点,且.(1)求抛物线的解析式;(2)点在轴上,且,求点的坐标;(3)点在抛物线上,点在抛物线的对称轴上,是否存在以点,为顶点的四边形是平行四边形?若存在。求出所有符合条件的点的坐标;若不存在,请说明理由.6.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线过点B,C两点,且与x轴的一个交点为D(2,0),点P是线段CB上的动点,设CP=t(0t10)(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PEBC,交抛物线于点E,连接BE,当t为何值时,PBE=OCD?(3)点Q是x轴上的动点,过点P作PMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值7. 如图,已知抛物线与轴交于两点,与轴交于点,且,直线与轴交于点,点是抛物线上的一动点,过点作轴,垂足为,交直线l于点.(1)试求该抛物线的表达式;(2)如图(1),若点在第三象限,四边形是平行四边形,求点的坐标;(3)如图(2),过点作轴,垂足为,连接, 求证:是直角三角形;试问当点横坐标为何值时,使得以点为顶点的三角形与相似?8.如图,在平面直角坐标系中,矩形的顶点分别在轴,轴的正半轴上,且.若抛物线经过两点,且顶点在边上,对称轴交于点,点的坐标分别为.(1)求抛物线的解析式;(2)猜想的形状并加以证明;(3)点在对称轴右侧的抛物线上,点在轴上,请问是否存在以点为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.9.如图,抛物线与轴交于两点,与轴交于点,其对称轴交抛物线于点,交轴于点,已知.求抛物线的解析式及点的坐标;连接为抛物线上一动点,当时,求点的坐标;平行于轴的直线交抛物线于两点,以线段为对角线作菱形,当点在轴上,且时,求菱形对角线的长.10.如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.(1)求抛物线的表达式;(2)点在线段上(不与点、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年幼儿园班主任工作总结模板五篇
- 农副食品品牌文化研究与传播路径创新创业项目商业计划书
- 2025年教师招聘之《幼儿教师招聘》通关练习题库包含答案详解【研优卷】
- 花卉识别基础知识培训课件
- 第16课-早期殖民掠夺
- 2025江苏盐城市文化广电和旅游局直属单位招录政府购买服务用工5人笔试备考试题及答案解析
- 2025年翻译专业译审考试真题及答案
- 教师招聘之《幼儿教师招聘》练习题(一)含答案详解【典型题】
- 2025年教师招聘之《幼儿教师招聘》练习题库含答案详解(巩固)
- 教师招聘之《小学教师招聘》练习题(一)附完整答案详解【典优】
- 安徽省蚌埠市重点中学2025届物理高二上期末学业质量监测模拟试题含解析
- 医院医保新员工岗前培训
- 静脉治疗护理技术操作标准解读
- 突发公共卫生事件校长为第一责任人制度
- 北师大版高中英语让学生自由飞翔
- (2024)新课标一年级语文上册 我上学了 第2课时 我爱我们的祖国 课件
- 手工木工(木模板工)技能考核要素细目表
- 《跨境直播运营》课件-跨境电商交易平台直播
- 液化气店转让合同范本
- 保温材料 扩散法测定长期吸水率
- 生活垃圾填埋场地下水污染防控与综合治理工程项目可行性研究报告
评论
0/150
提交评论