




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数的最值问题1,例1、已知函数f(x)= x22x 3. (1)若x 2,0 , 求函数f(x)的最值;,例1、已知函数f(x)= x2 2x 3. (1)若x 2,0 ,求函数f(x)的最值;,(2)若x 2,4 ,求函数f(x)的最值;,例1、已知函数f(x)= x2 2x 3. (1)若x 2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值;,(3)若x ,求 函数f(x)的最值;,例1、已知函数f(x)= x2 2x 3 (1)若x2,0,求函数f(x)的最值; (2)若x 2,4 ,求函数f(x)的最值; (3)若x ,求函数f(x)的最值;,(4)若x , 求函数f(x)的最值;,(5)若 xt,t+2时, 求函数f(x)的最值.,例1、已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值;,例1、已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值; (5)若xt,t+2时, 求函数f(x)的最值.,例1、已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值; (5)若xt,t+2时, 求函数f(x)的最值.,例1、已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值; (5)若xt,t+2时, 求函数f(x)的最值.,例1、已知函数f(x)= x2 2x 3. (1)若x2,0,求函数f(x)的最值; (2)若x 2,4,求函数f(x)的最值; (3)若x ,求函数f(x)的最值; (4)若x ,求 函数f(x)的最值; (5)若xt,t+2时, 求函数f(x)的最值.,评注:例1属于“轴定区间变”的问题,看作动区间沿x轴移动的过程中,函数最值的变化,即动区间在定轴的左、右两侧及包含定轴的变化,要注意开口方向及端点情况。,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,例2、求函数f(x)=ax22a2x+1(a0)在区间 1,2上的最值.,评注:例2属于“轴变区间定”的问题,看作对称轴沿x轴移动的过程中,函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定区间上变化情况,要注意开口方向及端点情况。,例3、已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,例3、已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,例3、已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,例3、已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,例3、已知函数f(x)=x2+ax+b,x0,1, 试确定a、b,使f(x)的值域是0,1.,总结:求二次函数f(x)=ax2+bx+c在m,n上 的最值或值域的一般方法是:,(2)当x0m,n时,f(m)、f(n)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届重庆市南岸区南开(融侨)中学九年级化学第一学期期中学业质量监测模拟试题含解析
- 2026届吉林省前郭尔罗斯蒙古族自治县英语九上期末教学质量检测模拟试题含解析
- 广东省佛山市南海中学2026届九年级化学第一学期期中联考试题含解析
- 2026届南通市崇川区启秀中学化学九年级第一学期期中统考试题含解析
- 河北省保定市涞水县2026届英语九年级第一学期期末调研试题含解析
- 四川省乐山市市中区2024-2025学年七年级下学期期末道德与法治试题(含解析)
- 2026届重庆市江北新区联盟化学九上期末监测试题含解析
- 湖南省长沙市望城县2026届英语九年级第一学期期末复习检测试题含解析
- 2026届咸宁市重点中学化学九上期中达标检测模拟试题含解析
- 2026届贵州省兴仁市第九中学九年级化学第一学期期中综合测试模拟试题含解析
- 宝宝呛奶科普课件
- 安全注射标准WST856-2025学习解读课件
- Z世代对消费场所视觉对比度
- 语言认同建构机制-第1篇-洞察及研究
- 2025年贵州省中考物理试题及答案
- (2025年标准)sm调教协议书
- 工会委员候选人选票(式样)
- 55790《表面工程学(第2版)》教学大纲
- 诊所消防安全培训
- 2025年护士资格证考试试题(附答案)
- 医院实验室生物安全管理体系文件
评论
0/150
提交评论