




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元微积分学,大 学 数 学(一),第9讲 闭区间上连续函数的性质,第三章 函数的极限与连续性,本章学习要求: 了解函数极限的概念,知道运用“”和 “X ”语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。 理解函数在一点连续以及在区间上连续的概念,会判断函数 间断点的类型。了解基本初等函数和初等函数的连续性以及 闭区间上连续函数的性质(介值定理、最值定理)。,闭区间上 连续函数的性质,一.最大值和最小值定理,二.介值定理,最大值和最小值定理,设 f (x) C ( a, b ), 则,(i) f (x) 在 a, b 上为以下四种单调函数时,y = f (x) a, b ,y = f (x) a, b ,则,则,(ii) y = f (x) 为一般的连续函数时,x,y,a,a1,a2,a3,a4,a5,a6,b,ma,mb,y = f (x),O,(最大值和最小值定理),若 f (x) C ( a, b ) , 则它在该闭区间,上, 至少取到它的最大值和最小值各一次 .,定理,若 f (x)C( a, b ), 则 f (x) 在 a, b 上有界.,看图就知道如何证明了.,推论,二.介值定理,a,x,y,y = f (x),f (a),b,f (b),O,f (x)C ( a, b ),f (a) f (b) 0,f ( )0.,先看一个图,描述一下这个现象,(根存在定理或零点定理),则至少存在一点 (a, b), 使得 f ( )0.,设 f (x) C ( a, b ), 且 f (a) f (b) 0,如何证明?,定理1,(介值定理),设 f (x)C ( a, b ), f (a)A, f (b)B,且 A B, 则对于 A, B 之间的任意一个数 C,至少存在一点 (a, b), 使得 f () = C.,定理2,最大、最小值定理,介质定理,?,引入,证明方程 x5 3x =1, 在 x =1 与 x =2 之间,令 f (x) = x5 3x 1, x1, 2,则 f (x)C( 1, 2 ),又 f (1) = 3, f (2) = 25, f (1) f (2) 0,即 方程在 x =1 与 x =2 之间至少有一根.,故 至少存在一个 (1, 2), 使得 f ( ) = 0,至少有一根.,证,至少有一个不超过 a + b 的正根.,证明方程 x = a sin x + b ( a 0, b 0 ),设 f (x) = x a sin x b , x 0, a + b ,则 f (x)C( 0, a + b ),而 f (0) = 0 a sin 0 b = b 0,f (a + b) = (a + b) a sin (a + b) b,= a ( 1 sin (a + b) ) 0,证,1) 如果 f (a + b)0, 则 = a + b 就是方程的根.,即方程至少有一个不超过 a + b 的正根.,定理, 至少存在一个 ( 0, a + b ), 使得 f ( ) = 0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全球宠物市场洞察之泰国篇:本土与出口市场双扩张中国品牌布局正启航402mb
- 弥漫性食管痉挛的临床护理
- 2025年门诊部年度工作总结模版
- 角弓反张的临床护理
- 暑期招生美术培训方案大纲
- 圆锥曲线公式总结模版
- 高血压防治与管理要点
- 四川省成都市温江区第二区2025年数学七下期末质量跟踪监视模拟试题含解析
- 护肤培训年终工作总结与展望
- 抗菌药物培训考核试题及答案
- 高分子化学材料结构与性能试题及答案
- 特种设备操作人员培训管理制度
- 客服质检管理竞聘述职报告
- 2025年湖北省孝感市中考物理模拟试卷(3月份)(含解析)
- 2024年四年级英语下册 Module 4 Things we enjoy Unit 12 The ugly duckling第1课时教学实录 牛津沪教版(三起)
- 2025年煤化工主要设备一览及工作原理等分析
- ICU医院感染暴发应急处置演练方案
- 中外教育史知到课后答案智慧树章节测试答案2025年春泰山学院
- 基础有机化学实验知到智慧树章节测试课后答案2024年秋浙江大学
- 特种设备安全管理的法律法规遵守培训计划
- 国家安全教育知到智慧树章节测试课后答案2024年秋山东大学(威海)
评论
0/150
提交评论