




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主成分分析法总结在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵计算样品数据的协方差矩阵:=(sij)pp,其中 i,j=1,2,p(2)求出的特征值及相应的正交化单位特征向量 的前m个较大的特征值l1l2lm0,就是前m个主成分对应的方差,对应的单位特征向量就是主成分Fi的关于原变量的系数,则原变量的第i个主成分Fi为:Fi =X主成分的方差(信息)贡献率用来反映信息量的大小,为:(3)选择主成分 最终要选择几个主成分,即F1,F2,Fm中m的确定是通过方差(信息)累计贡献率G(m)来确定当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m就是抽取的前m个主成分。(4)计算主成分载荷 主成分载荷是反映主成分Fi与原变量Xj之间的相互关联程度,原来变量Xj(j=1,2 , p)在诸主成分Fi(i=1,2,m)上的荷载 lij( i=1,2,m; j=1,2 ,p)。: 在SPSS软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。(5)计算主成分得分 计算样品在m个主成分上的得分: i = 1,2,m实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:其中:,根据数学公式知道,任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。另一方面,根据协方差的公式可以推得标准化后的协方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:计算相关系数矩阵求出相关系数矩阵的特征值及相应的正交化单位特征向量选择主成分 计算主成分得分总结:原指标相关系数矩阵相应的特征值li为主成分方差的贡献,方差的贡献率为 ,越大,说明相应的主成分反映综合信息的能力越强,可根据li的大小来提取主成分。每一个主成分的组合系数(原变量在该主成分上的载荷)就是相应特征值li所对应的单位特征向量。主成分分析法的计算步骤1、原始指标数据的标准化采集p 维随机向量x= (x1,X2,.,Xp)T)n 个样品xi= (xi1,xi2,.,xip)T,i=1,2,n,np,构造样本阵,对样本阵元进行如下标准化变换:其中,得标准化阵Z。2、对标准化阵Z 求相关系数矩阵其中,。3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分按确定m 值,使信息的利用率达85%以上,对每个j, j=1,2,.,m, 解方程组Rb= jb得单位特征向量。4、将标准化后的指标变量转换为主成分U1称为第一主成分,U2称为第二主成分,Up称为第p 主成分。5 、对m 个主成分进行综合评价对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率二、主成分分析的计算步骤1、计算相关系数矩阵rij(i,j=1,2,p)为原变量xi与xj的相关系数, rij=rji,其计算公式为2、计算特征值与特征向量解特征方程 ,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列 ; 分别求出对应于特征值 的特征向量 ,要求 =1,即其中 表示向量 的第j个分量。3、计算主成分贡献率及累计贡献率贡献率:累计贡献率:一般取累计贡献率达85%-95%的特征值, 所对应的第1、第2、第m(mp)个主成分。 4、计算主成分载荷5、各主成分得分三、主成分分析法在SPSS中的操作1、指标数据选取、收集与录入(表1)2、Analyze Data Reduction Factor Analysis,弹出Factor Analysis 对话框:3、把指标数据选入Variables 框,Descriptives: Correlation Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK。注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“TransformCompute Variable”, 在Compute Variable对话框中输入“A1=B1/SQR(7.22)”注: 第二主成分SQR后的括号中填1.235, 即可得到特征向量A1(见表6)。同理, 可得到特征向量A2。将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分表达式注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。标准化:通过AnalyzeDescriptive StatisticsDescriptives 对话框来实现: 弹出Descriptives 对话框后, 把X1X10 选入Variables 框, 在Save standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填入数据窗口中, 并以Z开头命名。以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行排序, 即可对各地区进行综合评价比较, 结果见表8。具体检验还需进一步探讨与学习利用Matlab编程实现主成分分析1.1主成分分析计算步骤 计算相关系数矩阵 (1)在(3.5.3)式中,rij(i,j=1,2,p)为原变量的xi与xj之间的相关系数,其计算公式为 (2)因为R是实对称矩阵(即rij=rji),所以只需计算上三角元素或下三角元素即可。 计算特征值与特征向量首先解特征方程,通常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列,即;然后分别求出对应于特征值的特征向量。这里要求=1,即,其中表示向量的第j个分量。 计算主成分贡献率及累计贡献率主成分的贡献率为累计贡献率为一般取累计贡献率达8595%的特征值所对应的第一、第二,第m(mp)个主成分。 计算主成分载荷其计算公式为 (3)得到各主成分的载荷以后,还可以按照(3.5.2)式进一步计算,得到各主成分的得分 (4)2.程序结构及函数作用在软件Matlab中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab种自带程序实现。下面主要主要介绍利用Matlab的矩阵计算功能编程实现主成分分析。2.1程序结构Cwprint.m 主函数 子函数 Cwstd.mCwscore.mCwfac.m2.2函数作用Cwstd.m用总和标准化法标准化矩阵Cwfac.m计算相关系数矩阵;计算特征值和特征向量;对主成分进行排序;计算各特征值贡献率;挑选主成分(累计贡献率大于85%),输出主成分个数;计算主成分载荷Cwscore.m计算各主成分得分、综合得分并排序Cwprint.m读入数据文件;调用以上三个函数并输出结果3.源程序3.1 cwstd.m%cwstd.m,用总和标准化法标准化矩阵function std=cwstd(vector)cwsum=sum(vector,1); %对列求和a,b=size(vector); %矩阵大小,a为行数,b为列数for i=1:a for j=1:b std(i,j)= vector(i,j)/cwsum(j); endend3.2 cwfac.m%cwfac.mfunction result=cwfac(vector);fprintf(相关系数矩阵:n)std=CORRCOEF(vector) %计算相关系数矩阵fprintf(特征向量(vec)及特征值(val):n)vec,val=eig(std) %求特征值(val)及特征向量(vec)newval=diag(val) ;y,i=sort(newval) ; %对特征根进行排序,y为排序结果,i为索引fprintf(特征根排序:n)for z=1:length(y) newy(z)=y(length(y)+1-z);endfprintf(%gn,newy)rate=y/sum(y);fprintf(n贡献率:n)newrate=newy/sum(newy)sumrate=0;newi=;for k=length(y):-1:1 sumrate=sumrate+rate(k); newi(length(y)+1-k)=i(k); if sumrate0.85 break; end end %记下累积贡献率大85%的特征值的序号放入newi中fprintf(主成分数:%gnn,length(newi);fprintf(主成分载荷:n)for p=1:length(newi) for q=1:length(y) result(q,p)=sqrt(newval(newi(p)*vec(q,newi(p); endend %计算载荷disp(result)3.3 cwscore.m%cwscore.m,计算得分function score=cwscore(vector1,vector2);sco=vector1*vector2;csum=sum(sco,2);newcsum,i=sort(-1*csum);newi,j=sort(i);fprintf(计算得分:n)score=sco,csum,j %得分矩阵:sco为各主成分得分;csum为综合得分;j为排序结果 3.4 cwprint.m%cwprint.mfunction print=cwprint(filename,a,b); %filename为文本文件文件名,a为矩阵行数(样本数),b为矩阵列数(变量指标数)fid=fopen(filename,r)vector=fscanf(fid,%g,a b);fprintf(标准化结果如下:n)v1=cwstd(vector)result=cwfac(v1);cwscore(v1,result);4.程序测试4.1原始数据中国大陆35个大城市某年的10项社会经济统计指标数据见下表。城 市名 称年底总人口(万人) 非农业人口比(%) 农 业总产值(万元)工业总产值(万元)客运总量(万人)货运总量(万吨)地方财政预算内收入(万元)城乡居民年底储蓄余额(万元)在岗职工人数(万人)在岗职工工资总额(万元)北 京1 249.900.597 81 843 42719 999 70620 32345 5622 790 86326 806 646410.805 773 301天 津910.170.580 91 501 13622 645 5023 25926 3171 128 07311 301 931202.682 254 343石 家 庄875.400.233 22 918 6806 885 7682 9291 911352 3487 095 87595.60758 877太 原299.920.656 3236 0382 737 7501 93711 895203 2773 943 10088.65654 023呼和浩特207.780.441 2365 343816 4522 3512 623105 7831 396 58842.11309 337沈 阳677.080.629 91 295 4185 826 7337 78215 412567 9199 016 998135.451 152 811大 连545.310.494 61 879 7398 426 38510 78019 187709 2277 556 79694.15965 922长 春691.230.406 81 853 2105 966 3434 8109 532357 0964 803 744102.63884 447哈 尔 滨927.090.462 72 663 8554 186 1236 7207 520481 4436 450 020172.791 309 151上 海1 313.120.738 42 069 01954 529 0986 40644 4854 318 50025 971 200336.845 605 445南 京537.440.534 1989 19913 072 73714 26911 193664 2995 680 472113.811 357 861杭 州616.050.355 61 414 73712 000 79617 88311 684449 5937 425 96796.901 180 947宁 波538.410.254 71 428 23510 622 86622 21510 298501 7235 246 35062.15824 034合 肥429.950.318 4628 7642 514 1254 8931 517233 6281 622 93147.27369 577福 州583.130.273 32 152 2886 555 3518 8517 190467 5245 030 22069.59680 607厦 门128.990.486 5333 3745 751 1243 7282 570418 7582 108 33146.93657 484南 昌424.200.398 8688 2892 305 8813 6743 189167 7142 640 46062.08479 ,555济 南557.630.408 51 486 3026 285 8825 91511 775460 6904 126 97083.31756 696青 岛702.970.369 32 382 32011 492 03613 40817 038658 4354 978 045103.52961 704郑 州615.360.342 4677 4255 287 60110 4336 768387 2525 135 33884.66696 848武 汉740.200.586 91 211 2917 506 0859 79315 442604 6585 748 055149.201 314 766长 沙582.470.310 71 146 3673 098 1798 7065 718323 6603 461 24469.57596 986广 州685.000.621 41 600 73823 348 13922 00723 8541 761 49920 401 811182.813 047 594深 圳119.850.793 1299 66220 368 2958 7544 2741 847 9089 519 90091.261 890 338南 宁285.870.406 4720 4861 149 6915 1303 293149 7002 190 91845.09371 809海 口54.380.835 444 815717 4615 3452 356115 1741 626 80019.01198 138重 庆3 072.340.206 74 168 7808 585 52552 44125 124898,9129 090 969223.731 606 804成 都1 003.560.3351 935 5905 894 28940 14019 632561 1897 479 684132.891 200 671贵 阳321.500.455 7362 0612 247 93415 7034 143197 9081 787 74855.28419 681昆 明473.390.386 5793 3563 605 7295 60412 042524 2164 127 90088.11842 321西 安674.500.409 4739 9053 665 94210 3119 766408 8965 863 980114.01885 169兰 州287.590.544 5259 4442 940 8841 8324 749169 5402 641 56865.83550 890西 宁133.950.522 765 848711 3101 7461 46949 134855 05127.21219 251银 川95.380.570 9171 603661 2262 1061 19374 758814 10323.72178 621乌鲁木齐158.920.824 478 5131 847 2412 6689 041254 8702 365 50855.27517 6224.2运行结果 cwprint(cwbook.txt,35,10)fid =6数据标准化结果如下:v1 =0.0581 0.0356 0.0435 0.0680 0.0557 0.1112 0.1194 0.1184 0.1083 0.13920.0423 0.0346 0.0354 0.0770 0.0089 0.0642 0.0483 0.0499 0.0534 0.05440.0407 0.0139 0.0688 0.0234 0.0080 0.0047 0.0151 0.0314 0.0252 0.01830.0139 0.0391 0.0056 0.0093 0.0053 0.0290 0.0087 0.0174 0.0234 0.01580.0097 0.0263 0.0086 0.0028 0.0064 0.0064 0.0045 0.0062 0.0111 0.00750.0315 0.0375 0.0305 0.0198 0.0213 0.0376 0.0243 0.0398 0.0357 0.02780.0253 0.0295 0.0443 0.0286 0.0295 0.0468 0.0304 0.0334 0.0248 0.02330.0321 0.0242 0.0437 0.0203 0.0132 0.0233 0.0153 0.0212 0.0270 0.02130.0431 0.0276 0.0628 0.0142 0.0184 0.0184 0.0206 0.0285 0.0455 0.03160.0610 0.0440 0.0488 0.1853 0.0176 0.1086 0.1848 0.1148 0.0888 0.13520.0250 0.0318 0.0233 0.0444 0.0391 0.0273 0.0284 0.0251 0.0300 0.03270.0286 0.0212 0.0334 0.0408 0.0490 0.0285 0.0192 0.0328 0.0255 0.02850.0250 0.0152 0.0337 0.0361 0.0609 0.0251 0.0215 0.0232 0.0164 0.01990.0200 0.0190 0.0148 0.0085 0.0134 0.0037 0.0100 0.0072 0.0125 0.00890.0271 0.0163 0.0508 0.0223 0.0243 0.0175 0.0200 0.0222 0.0183 0.01640.0060 0.0290 0.0079 0.0195 0.0102 0.0063 0.0179 0.0093 0.0124 0.01590.0197 0.0237 0.0162 0.0078 0.0101 0.0078 0.0072 0.0117 0.0164 0.01160.0259 0.0243 0.0350 0.0214 0.0162 0.0287 0.0197 0.0182 0.0220 0.01820.0327 0.0220 0.0562 0.0391 0.0367 0.0416 0.0282 0.0220 0.0273 0.02320.0286 0.0204 0.0160 0.0180 0.0286 0.0165 0.0166 0.0227 0.0223 0.01680.0344 0.0349 0.0286 0.0255 0.0268 0.0377 0.0259 0.0254 0.0393 0.03170.0271 0.0185 0.0270 0.0105 0.0239 0.0140 0.0139 0.0153 0.0183 0.01440.0318 0.0370 0.0377 0.0793 0.0603 0.0582 0.0754 0.0901 0.0482 0.07350.0056 0.0472 0.0071 0.0692 0.0240 0.0104 0.0791 0.0421 0.0240 0.04560.0133 0.0242 0.0170 0.0039 0.0141 0.0080 0.0064 0.0097 0.0119 0.00900.0025 0.0497 0.0011 0.0024 0.0146 0.0057 0.0049 0.0072 0.0050 0.00480.1428 0.0123 0.0983 0.0292 0.1437 0.0613 0.0385 0.0402 0.0590 0.03870.0466 0.0199 0.0456 0.0200 0.1100 0.0479 0.0240 0.0331 0.0350 0.02900.0149 0.0271 0.0085 0.0076 0.0430 0.0101 0.0085 0.0079 0.0146 0.01010.0220 0.0230 0.0187 0.0123 0.0154 0.0294 0.0224 0.0182 0.0232 0.02030.0313 0.0244 0.0174 0.0125 0.0283 0.0238 0.0175 0.0259 0.0300 0.0213 0.0134 0.0324 0.0061 0.0100 0.0050 0.0116 0.0073 0.0117 0.0173 0.01330.0062 0.0311 0.0016 0.0024 0.0048 0.0036 0.0021 0.0038 0.0072 0.00530.0044 0.0340 0.0040 0.0022 0.0058 0.0029 0.0032 0.0036 0.0063 0.00430.0074 0.0491 0.0019 0.0063 0.0073 0.0221 0.0109 0.0105 0.0146 0.0125相关系数矩阵:std =1.0000 -0.3444 0.8425 0.3603 0.7390 0.6215 0.4039 0.4967 0.6761 0.4689-0.3444 1.0000 -0.4750 0.3096 -0.3539 0.1971 0.3571 0.2600 0.1570 0.30900.8425 -0.4750 1.0000 0.3358 0.5891 0.5056 0.3236 0.4456 0.5575 0.37420.3603 0.3096 0.3358 1.0000 0.1507 0.7664 0.9412 0.8480 0.7320 0.86140.7390 -0.3539 0.5891 0.1507 1.0000 0.4294 0.1971 0.3182 0.3893 0.25950.6215 0.1971 0.5056 0.7664 0.4294 1.0000 0.8316 0.8966 0.9302 0.90270.4039 0.3571 0.3236 0.9412 0.1971 0.8316 1.0000 0.9233 0.8376 0.95270.4967 0.2600 0.4456 0.8480 0.3182 0.8966 0.9233 1.0000 0.9201 0.97310.6761 0.1570 0.5575 0.7320 0.3893 0.9302 0.8376 0.9201 1.0000 0.93960.4689 0.3090 0.3742 0.8614 0.2595 0.9027 0.9527 0.9731 0.9396 1.0000特征向量(vec):vec =-0.1367 0.2282 -0.2628 0.1939 0.6371 -0.2163 0.3176 -0.1312 -0.4191 0.2758-0.0329 -0.0217 0.0009 0.0446 -0.1447 -0.4437 0.4058 -0.5562 0.5487 0.0593-0.0522 -0.0280 0.2040 -0.0492 -0.5472 -0.4225 0.3440 0.3188 -0.4438 0.2401 0.0067 -0.4176 -0.2856 -0.2389 0.1926 -0.4915 -0.4189 0.2726 0.2065 0.3403 0.0404 0.1408 0.0896 0.0380 -0.1969 -0.0437 -0.4888 -0.6789 -0.4405 0.1861-0.0343 0.2360 0.0640 -0.8294 0.0377 0.2662 0.1356 -0.1290 0.0278 0.37820.2981 0.4739 0.5685 0.2358 0.1465 -0.1502 -0.2631 0.1245 0.2152 0.36440.1567 0.3464 -0.6485 0.2489 -0.4043 0.2058 -0.0704 0.0462 0.1214 0.38120.4879 -0.5707 0.1217 0.1761 0.0987 0.3550 0.3280 -0.0139 0.0071 0.3832-0.7894 -0.1628 0.1925 0.2510 -0.0422 0.2694 0.0396 0.0456 0.1668 0.3799特征值(val)val =0.0039 0 0 0 0 0 0 0 0 00 0.0240 0 0 0 0 0 0 0 00 0 0.0307 0 0 0 0 0 0 0 0 0 0 0.0991 0 0 0 0 0 0 0 0 0 0 0.1232 0 0 0 0 0 0 0 0 0 0 0.2566 0 0 0 00 0 0 0 0 0 0.3207 0 0 00 0 0 0 0 0 0 0.5300 0 00 0 0 0 0 0 0 0 2.3514 00 0 0 0 0 0 0 0 0 6.2602特征根排序:6.260222.351380.5300470.3206990.2566390.1232410.09909150.03070880.02403550.00393387各主成分贡献率:newrate =0.6260 0.2351 0.0530 0.0321 0.0257 0.0123 0.0099 0.0031 0.0024 0.0004第一、二主成分的载荷: 0.690 1 -0.6427 0.148 3 0.8414 0.600 7 -0.6805 0.851 5 0.3167 0.465 6 -0.6754 0.946 3 0.0426 0.911 7 0.3299 0.953 7 0.1862 0.958 9 0.0109 0.950 6 0.2558第一、二、三、四主成分的得分:score = 0.718 5 0.049 9 0.768 4 2.0000 0.380 6 0.038 6 0.419 2 4.0000 0.184 8 -0.043 3 0.141 4 21.0000 0.118 6 0.031 1 0.149 7 20.0000 0.054 9 0.011 5 0.066 4 33.0000 0.228 8 0.007 0 0.235 8 7.000 0 0.2364 -0.0081 0.2283 10.0000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论