




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十九) 抛物线的简单几何性质层级一学业水平达标1已知抛物线的对称轴为x轴,顶点在原点,焦点在直线2x4y110上,则此抛物线的方程是()Ay211xBy211xCy222x Dy222x解析:选C在方程2x4y110中,令y0得x,抛物线的焦点为F,即,p11,抛物线的方程是y222x,故选C2过点(2,4)作直线l,与抛物线y28x只有一个公共点,这样的直线l有()A1条 B2条C3条 D4条解析:选B可知点(2,4)在抛物线y28x上,过点(2,4)与抛物线y28x只有一个公共点的直线有两条,一条是抛物线的切线,另一条与抛物线的对称轴平行3设O为坐标原点,F为抛物线y24x的焦点,A为抛物线上一点,若4,则点A的坐标为()A(2,2 ) B(1,2)C(1,2) D(2,2)解析:选B设A(x,y),则y24x,又(x,y),(1x,y),所以xx2y24由可解得x1,y24过点(1,0)作斜率为2的直线,与抛物线y28x交于A,B两点,则弦AB的长为()A2B2C2 D2解析:选B设A(x1,y1),B(x2,y2)由题意知AB的方程为y2(x1),即y2x2由得x24x10,x1x24,x1x21|AB|25设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为()A BC D解析:选D易知抛物线中p,焦点F,直线AB的斜率k,故直线AB的方程为y,代入抛物线方程y23x,整理得x2x0设A(x1,y1),B(x2,y2),则x1x2由抛物线的定义可得弦长|AB|x1x2p12,结合图象可得O到直线AB的距离dsin 30,所以OAB的面积S|AB|d6直线yx1被抛物线y24x截得的线段的中点坐标是_解析:将yx1代入y24x,整理,得x26x10由根与系数的关系,得x1x26,3,2所求点的坐标为(3,2)答案:(3,2)7过抛物线y24x的焦点作直线交抛物线于点A(x1,y1),B(x2,y2),若|AB|7,则AB的中点M到抛物线准线的距离为_解析:抛物线的焦点为F(1,0),准线方程为x1由抛物线的定义知|AB|AF|BF|x1x2x1x2p,即x1x227,得x1x25,于是弦AB的中点M的横坐标为因此,点M到抛物线准线的距离为1答案:8过抛物线x22py(p0)的焦点F作倾斜角为30的直线,与抛物线分别交于A,B两点(点A在y轴左侧),则_解析:由题意可得焦点F,故直线AB的方程为yx,与x22py联立得A,B两点的横坐标为xAp,xBp,故Ap,p,Bp,p,所以|AF|p,|BF|2p,所以答案:9已知抛物线y26x,过点P(4,1)引一弦,使它恰在点P被平分,求这条弦所在的直线方程解:设弦的两个端点为P1(x1,y1),P2(x2,y2)P1,P2在抛物线上,y6x1,y6x2两式相减得(y1y2)(y1y2)6(x1x2)y1y22,代入得k3直线的方程为y13(x4),即3xy11010已知直线l经过抛物线y24x的焦点F,且与抛物线相交于A,B两点(1)若|AF|4,求点A的坐标;(2)求线段AB的长的最小值解:由y24x,得p2,其准线方程为x1,焦点F(1,0)设A(x1,y1),B(x2,y2)(1)由抛物线的定义可知,|AF|x1,从而x1413代入y24x,解得y12点A的坐标为(3,2)或(3,2)(2)当直线l的斜率存在时,设直线l的方程为yk(x1)与抛物线方程联立,得消去y,整理得k2x2(2k24)xk20直线与抛物线相交于A,B两点,则k0,并设其两根为x1,x2,x1x22由抛物线的定义可知,|AB|x1x2p44当直线l的斜率不存在时,直线l的方程为x1,与抛物线相交于A(1,2),B(1,2),此时|AB|4,|AB|4,即线段AB的长的最小值为4层级二应试能力达标1边长为1的等边三角形AOB,O为坐标原点,ABx轴,以O为顶点且过A,B的抛物线方程是()Ay2xBy2xCy2x Dy2x解析:选C设抛物线方程为y2ax(a0)又A(取点A在x轴上方),则有a,解得a,所以抛物线方程为y2x故选C2过抛物线y24x的焦点,作一条直线与抛物线交于A,B两点,若它们的横坐标之和等于5,则这样的直线()A有且仅有一条 B有两条C有无穷多条 D不存在解析:选B设A(x1,y1),B(x2,y2),由抛物线的定义,知|AB|x1x2p527又直线AB过焦点且垂直于x轴的直线被抛物线截得的弦长最短,且|AB|min2p4,所以这样的直线有两条故选B3直线ykx2交抛物线y28x于A,B两点,若AB中点的横坐标为2,则k()A2或2 B1或1C2 D3解析:选C由得k2x24(k2)x40又由16(k2)216k20,得k1则由4,得k2故选C4已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A,B两点,若0,则k()A BC D2解析:选D由题意可知抛物线C的焦点坐标为(2,0),则直线AB的方程为yk(x2),将其代入y28x,得k2x24(k22)x4k20设A(x1,y1),B(x2,y2),则由0,(x12,y12)(x22,y22)0(x12)(x22)(y12)(y22)0,即x1x22(x1x2)4y1y22(y1y2)40由解得k2故选D项5已知抛物线C:y22px(p0)的焦点坐标为(1,0),则p_;若抛物线C上一点A到其准线的距离与到原点距离相等,则A点到x轴的距离为_解析:抛物线C:y22px(p0)的焦点坐标为(1,0),1,即p2.点A到其准线的距离与到原点距离|OA|相等,且点A到准线的距离等于|AF|,|OA|AF|,A点的横坐标为,y42,解得|yA|,即A到x轴的距离为.答案:26顶点为坐标原点,焦点在x轴上的抛物线,截直线2xy10所得的弦长为,则抛物线方程为_解析:设所求抛物线方程为y2ax(a0),联立得4x2(4a)x10,则(4a)2160,得a8或a0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程解:(1)设Q(x0,4),代入y22px得x0所以|PQ|,|QF|x0由题设得,解得p2(舍去)或p2所以C的方程为y24x(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x得y24my40设A(x1,y1),B(x2,y2),则y1y24m,y1y24故AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又l的斜率为m,所以l的方程为xy2m23将上式代入y24x,并整理得y2y4(2m23)0设M(x3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自体免疫性疾病研究体系
- 急诊创伤病人麻醉处理要点
- 2025年新高考数学一轮复习讲义:第九章统计与成对数据的统计分析(学生版)
- 2025年音乐版权运营案例分析:流媒体平台用户付费策略深度研究报告
- 基于2025年标准的学校体育馆建设初步设计抗震性能评估报告
- 房地产企业2025年财务风险管理策略与稳健经营路径研究优化优化优化优化报告
- 2025年森林生态系统服务功能评估在生态修复中的应用报告
- 2025年能源互联网背景下分布式能源交易策略研究报告
- 一番的意思4篇
- 书法培训班教学管理制度
- 高层建筑防火涂料施工标准方案
- 2024年重庆市初中学业水平考试生物试卷含答案
- 胎盘滞留病因介绍
- 机械类中职学业水平考试专业综合理论考试题库(含答案)
- 无人机在坦克战中的火力支援研究-洞察分析
- 四川省树德中学2025届高三下学期一模考试数学试题含解析
- 王阳明读书分享
- 医院规范肿瘤化疗制度
- 2024年银行考试-银行间本币市场交易员资格考试近5年真题集锦(频考类试题)带答案
- 审计应知应会知识题库及答案(共341题)
- PC工法桩专项施工方案-
评论
0/150
提交评论