2019版高考数学复习解析几何课时达标检测四十五直线与圆锥曲线.docx_第1页
2019版高考数学复习解析几何课时达标检测四十五直线与圆锥曲线.docx_第2页
2019版高考数学复习解析几何课时达标检测四十五直线与圆锥曲线.docx_第3页
2019版高考数学复习解析几何课时达标检测四十五直线与圆锥曲线.docx_第4页
2019版高考数学复习解析几何课时达标检测四十五直线与圆锥曲线.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标检测(四十五)直线与圆锥曲线练基础小题强化运算能力1已知双曲线1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则该直线的斜率的取值范围是_解析:由题意知,右焦点为F(4,0),双曲线的两条渐近线方程为yx.当过点F的直线与渐近线平行时,满足与双曲线的右支有且只有一个交点,数形结合可知该直线的斜率的取值范围是.答案:2(2018南京模拟)已知经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q,则k的取值范围是_解析:由题意得,直线l的方程为ykx,代入椭圆方程得(kx)21,整理得x22kx10.直线l与椭圆有两个不同的交点P和Q等价于8k244k220,解得k或k,即k的取值范围为.答案:3斜率为1的直线l与椭圆y21相交于A,B两点,则|AB|的最大值为_解析:设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0.则x1x2t,x1x2.|AB|x1x2| ,故当t0时,|AB|max.答案:4已知椭圆C:1(ab0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为_解析:由题意得解得故椭圆C的方程为1. 答案:1练常考题点检验高考能力一、填空题1(2018苏州模拟)椭圆ax2by21与直线y1x交于A,B两点,过原点与线段AB中点的直线的斜率为,则_.解析:设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),结合题意,由点差法得,1,所以.答案:2(2018启东中学期末)经过椭圆y21的一个焦点作倾斜角为45的直线l,交椭圆于A,B两点设O为坐标原点,则等于_解析:依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y0tan 45(x1),即yx1,代入椭圆方程y21并整理得3x24x0,解得x0或x,所以两个交点坐标分别为(0,1),同理,直线 l经过椭圆的左焦点时,也可得.答案:3已知抛物线y22px的焦点F与椭圆16x225y2400的左焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|AF|,则点A的横坐标为_解析:16x225y2400可化为1,则椭圆的左焦点为F(3,0),又抛物线y22px的焦点为,准线为x,所以3,即p6,即y212x,K(3,0)设A(x,y),则由|AK|AF|得(x3)2y22(x3)2y2,即x218x9y20,又y212x,所以x26x90,解得x3.答案:34已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为_解析:设A(x1,y1),B(x2,y2),两点在抛物线上,得(y1y2)(y1y2)2p(x1x2),又线段AB的中点的纵坐标为2,y1y24,又直线的斜率为1,1,2p4,p2,抛物线的准线方程为x1.答案:x15抛物线y24x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是_解析:y24x,F(1,0),准线l:x1,过焦点F且斜率为的直线l1:y(x1),与y24x联立,解得A(3,2),AK4,SAKF424.答案:46若椭圆1的焦点在x轴上,过点作圆x2y21的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是_解析:由题可设斜率存在的切线的方程为yk(x1)(k为切线的斜率),即2kx2y2k10,由1,解得k,所以圆x2y21的一条切线的方程为3x4y50,可求得切点的坐标为,易知另一切点的坐标为(1,0),则直线AB的方程为y2x2,令y0得右焦点为(1,0),令x0得上顶点为(0,2),故a2b2c25,所以所求椭圆的方程为1.答案:17设双曲线1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_解析:c5,设过点F平行于一条渐近线的直线方程为y(x5),即4x3y200,联立直线与双曲线方程,求得yB,则S(53).答案:8在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一条直线,与抛物线yx2相交于A,B两点,若2,则c的值为_解析:设过点C的直线为ykxc(c0),代入yx2得x2kxc,即x2kxc0,设A(x1,y1),B(x2,y2),则x1x2k,x1x2c,(x1,y1),(x2,y2),因为2,所以x1x2y1y22,即x1x2(kx1c)(kx2c)2,即x1x2k2x1x2kc(x1x2)c22,所以ck2ckckc22,即c2c20,所以c2或c1(舍去)答案:29(2018徐州中学模拟)中心为原点,一个焦点为F(0,5)的椭圆,截直线y3x2所得弦中点的横坐标为,则该椭圆方程为_解析:由已知得c5,设椭圆的方程为1,联立得消去y得(10a2450)x212(a250)x4(a250)a2(a250)0,设直线y3x2与椭圆的交点坐标分别为(x1,y1),(x2,y2),由根与系数关系得x1x2,由题意知x1x21,即1,解得a275,所以该椭圆方程为1.答案:110已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A,B两点若0,则k_.解析:如图所示,设F为焦点,易知F(2,0),取AB的中点P,过A,B分别作准线的垂线,垂足分别为G,H,连结MF,MP,由0,知MAMB,则|MP|AB|(|AF|BF|)(|AG|BH|),所以MP为直角梯形BHGA的中位线,所以MPAGBH,由|MP|AP|,得GAMAMPMAP,又|AG|AF|,AM为公共边,所以AMGAMF,所以AFMAGM90,则MFAB,所以k2.答案:2二、解答题11(2017江苏高考)如图,在平面直角坐标系xOy中,椭圆E:1(ab0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标解:(1)设椭圆的半焦距为c.因为椭圆E的离心率为,两准线之间的距离为8,所以,8,解得a2,c1,于是b,因此椭圆E的标准方程是1.(2)由(1)知,F1(1,0),F2(1,0)设P(x0,y0),因为P为第一象限的点,故x00,y00.当x01时,l2与l1相交于F1,与题设不符当x01时,直线PF1的斜率为,直线PF2的斜率为.因为l1PF1,l2PF2,所以直线l1的斜率为,直线l2的斜率为,从而直线l1的方程为y(x1),直线l2的方程为y(x1)由,解得xx0,y,所以Q.因为点Q在椭圆上,由对称性,得y0,即xy1或xy1.又点P在椭圆E上,故1.联立解得联立无解因此点P的坐标为.12(2016全国卷)已知A是椭圆E:1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(1)当|AM|AN|时,求AMN的面积;(2)当2|AM|AN|时,证明:k2.解:(1)设M(x1,y1),则由题意知y10.由已知及椭圆的对称性知,直线AM的倾斜角为.又A(2,0),因此直线AM的方程为yx2.将xy2代入1得7y212y0.解得y0或y,所以y1.因此AMN的面积SAMN2.(2)证明:设直线AM的方程为yk(x2)(k0),代入1得(34k2)x216k2x16k2120.由x1(2),得x1,故|AM|x12|.由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论