2018年高中数学概率课时跟踪检测九随机事件的概率概率的意义新人教A版.docx_第1页
2018年高中数学概率课时跟踪检测九随机事件的概率概率的意义新人教A版.docx_第2页
2018年高中数学概率课时跟踪检测九随机事件的概率概率的意义新人教A版.docx_第3页
2018年高中数学概率课时跟踪检测九随机事件的概率概率的意义新人教A版.docx_第4页
2018年高中数学概率课时跟踪检测九随机事件的概率概率的意义新人教A版.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时跟踪检测(九) 随机事件的概率 概率的意义层级一学业水平达标1在1,2,3,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A必然事件B不可能事件C随机事件 D以上选项均不正确解析:选C若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件2在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为()A3件都是正品 B至少有1件次品C3件都是次品 D至少有1件正品解析:选C25件产品中只有2件次品,所以不可能取出3件都是次品3事件A发生的概率接近于0,则()A事件A不可能发生B事件A也可能发生C事件A一定发生 D事件A发生的可能性很大解析:选B不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件4高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是,某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对”这句话()A正确 B错误C不一定 D无法解释解析:选B把解答一个选择题作为一次试验,答对的概率是说明了对的可能性大小是.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,甚至12个题都选择正确5根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A374副 B224.4副C不少于225副 D不多于225副解析:选C根据概率相关知识,该校近视生人数约为60037.4%224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C6一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是_解析:把频率视为概率,故所求概率近似为P0.03.答案:0.037如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是_解析:取了10次有9个白球,则取出白球的频率是,估计其概率约是,那么取出黑球的概率约是,因为取出白球的概率大于取出黑球的概率,所以估计袋中数量多的是白球答案:白球8在某餐厅内抽取100人,其中有30人在15岁及15岁以下,35人在16岁至25岁之间,25人在26岁至45岁之间,10人在46岁及46岁以上,则从此餐厅内随机抽取1人,此人年龄在16岁至25岁之间的概率约为_解析:16岁至25岁之间的人数为35,频率为0.35,故从此餐厅内随机抽取一人,此人年龄在16岁至25岁之间的概率约为0.35.答案:0.359某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n8101291016进球次数m6897712(1)计算表中每次投篮的频率值;(2)该运动员投篮的命中率约为多少解:该运动员投篮的频率值依次为,.(2)由(1)可知频率总在的附近摆动可知运动员的进球概率约为,也就是其投篮的命中率约为.10设人的某一特征(眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:(1)1个孩子由显性决定特征的概率是多少?(2)“该父母生的2个孩子中至少有1个由显性决定特征”,这种说法正确吗?解:父、母的基因分别为rd,rd,则这孩子从父母身上各得到一个基因的所有可能性为rr,rd,rd,dd,共为4种,故具有dd基因的可能性为,具有rr基因的可能性也为,具有rd基因的可能性为.(1)1个孩子由显性决定特征的概率是.(2)这种说法不正确,2个孩子中每个由显性决定特征的概率均相等,为.层级二应试能力达标1下面事件:某项体育比赛出现平局;抛掷一枚硬币,出现反面;全球变暖会导致海平面上升;一个三角形的三边长分别为1,2,3.其中是不可能事件的是()A BC D解析:选D三角形的三条边必须满足两边之和大于第三边2在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝下”的次数为()A0.49 B49C0.51 D51解析:选D正面朝下的频率为10.490.51,次数为0.5110051次3聊城市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而聊城市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?()A甲公司 B乙公司C甲、乙公司均可 D以上都对解析:选B由题意得肇事车是甲公司的概率为,是乙公司的概率为,由极大似然法可知认定肇事车为乙公司的车辆较为合理4抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是()ABC D解析:选D抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为.5下列给出五个事件:某地2月3日下雪;函数yax(a0,且a1)在定义域上是增函数;实数的绝对值不小于0;在标准大气压下,水在1 结冰;a,bR,则abbA其中必然事件是_;不可能事件是_;随机事件是_解析:由必然事件、不可能事件、随机事件的定义即可得到答案答案:6一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本已知B层中每个个体被抽到的概率都为,则总体中的个体数为_解析:设总体中的个体数为x,则,所以x120.答案:1207某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513条鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30 000个鱼卵大约能孵化多少条鱼苗?(3)要孵化5 000条鱼苗,大约需准备多少个鱼卵(精确到百位)?解:(1)这种鱼卵的孵化频率为0.851 3,把它近似作为孵化的概率(2)设能孵化x条鱼苗,则0.851 3.所以x25 539,即30 000个鱼卵大约能孵化25 539条鱼苗(3)设大约需准备y个鱼卵,则0.851 3,所以y5 900,即大约需准备5 900个鱼卵8某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6 000次(1)估计从袋中任意摸出一个球,恰好是红球的概率;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论