2019版高考数学复习三角函数解三角形第7讲解三角形的应用举例增分练.docx_第1页
2019版高考数学复习三角函数解三角形第7讲解三角形的应用举例增分练.docx_第2页
2019版高考数学复习三角函数解三角形第7讲解三角形的应用举例增分练.docx_第3页
2019版高考数学复习三角函数解三角形第7讲解三角形的应用举例增分练.docx_第4页
2019版高考数学复习三角函数解三角形第7讲解三角形的应用举例增分练.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7讲解三角形的应用举例板块四模拟演练提能增分A级基础达标1已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得ABC120,则A,C两地间的距离为()A10 km B10 kmC10 km D10 km答案D解析如图所示,由余弦定理可得:AC210040021020cos120700,AC10(km)22018武汉模拟海面上有A,B,C三个灯塔,AB10 n mile,从A望C和B成60视角,从B望C和A成75视角,则BC()A10 n mile B. n mileC5 n mile D5 n mile答案D解析由题意可知,CAB60,CBA75,所以C45,由正弦定理得,所以BC5.3.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为()Aa km B.a kmC.a km D2a km答案B解析在ABC中,由余弦定理得AB2AC2BC22ACBCcosACBa2a22a2cos1203a2,故|AB|a.42018临沂质检在200 m高的山顶上,测得山下一塔顶与塔底俯角分别为30、60,则塔高为()A. m B. mC. m D. m答案A解析如图,由已知可得BAC30,CAD30,BCA60,ACD30,ADC120,又AB200,AC.在ACD中,由正弦定理,得,即DC(m)5.如图,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A8 km/h B6 km/hC2 km/h D10 km/h答案B解析设AB与河岸线所成的角为,客船在静水中的速度为v km/h,由题意知,sin,从而cos,所以由余弦定理得2212221,解得v6.6.如图,某工程中要将一长为100 m,倾斜角为75的斜坡改造成倾斜角为30的斜坡,并保持坡高不变,则坡底需加长_m.答案100解析设坡底需加长x m,由正弦定理得,解得x100.7.如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB5,BC8,CD3,DA5,且B与D互补,则AC的长为_km.答案7解析8252285cos(D)3252235cosD,cosD.AC7(km)8.2018河南调研如图,在山底A点处测得山顶仰角CAB45,沿倾斜角为30的斜坡走1000米至S点,又测得山顶仰角DSB75,则山高BC为_米答案1000解析由题图知BAS453015,ABS45(90DSB)30,ASB135,在ABS中,由正弦定理可得,AB1000,BC1000(米)9.2018山西监测如图,点A,B,C在同一水平面上,AC4,CB6.现要在点C处搭建一个观测站CD,点D在顶端(1)原计划CD为铅垂线方向,45,求CD的长;(2)搭建完成后,发现CD与铅垂线方向有偏差,并测得30,53,求CD2.(结果精确到1)(本题参考数据:sin971,cos530.6)解(1)CD为铅垂线方向,点D在顶端,CDAB.又45,CDAC4.(2)在ABD中,533083,ABACCB4610,ADB1808397,由得AD5.在ACD中,CD2AD2AC22ADACcos5242254cos5317.10.如图,在海岸A处发现北偏东45方向,距A处(1)海里的B处有一艘走私船在A处北偏西75方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30方向逃窜问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间解设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD 10t海里,BD10t海里,在ABC中,由余弦定理,有BC2AB2AC22ABACcosBAC(1)2222(1)2cos1206,解得BC.又,sinABC,ABC45,故B点在C点的正东方向上,CBD9030120,在BCD中,由正弦定理,得,sinBCD.BCD30,缉私船沿北偏东60的方向行驶又在BCD中,CBD 120,BCD30,D30,BDBC,即10t,解得t小时15分钟缉私船应沿北偏东60的方向行驶,才能最快截获走私船,大约需要15分钟B级知能提升12018天津模拟一艘海轮从A处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是()A10 海里 B10 海里C20 海里 D20 海里答案A解析如图所示,易知,在ABC中,AB20海里,CAB30,ACB45,根据正弦定理得,解得BC10(海里)2.某观察站B在A城的南偏西20的方向,由A出发的一条公路的走向是南偏东25.现在B处测得此公路上距B处30 km的C处有一人正沿此公路骑车以40 km/h的速度向A城驶去,行驶了15 min后到达D处,此时测得B与D之间的距离为8 km,则此人到达A城还需要()A40 min B42 min C48 min D60 min答案C解析由题意可知,CD4010.cosBDC,cosADBcos(BDC),sinABDsin(ADBBAD).在ABD中,由正弦定理得,AD32,所需时间t0.8 h,此人还需要0.8 h即48 min到达A城3.2014全国卷如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得M点的仰角MAN60,C点的仰角CAB45以及MAC75;从C点测得MCA60,已知山高BC100 m,则山高MN_m.答案150解析在RtABC中,AC100 m,在MAC中,由正弦定理得,解得MA100 m,在RtMNA中,MNMAsin60150 m.即山高MN为150 m.4.如图所示,A,C两岛之间有一片暗礁一艘小船于某日上午8时从A岛出发,以10海里/小时的速度沿北偏东75方向直线航行,下午1时到达B处然后以同样的速度沿北偏东15方向直线航行,下午4时到达C岛(1)求A,C两岛之间的距离;(2)求BAC的正弦值解(1)在ABC中,由已知,得AB10550(海里),BC10330(海里),ABC1807515120,由余弦定理,得AC250230225030cos1204900,所以AC70(海里)故A,C两岛之间的距离是70海里(2)在ABC中,由正弦定理,得,sinBAC.故BAC的正弦值是.5某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45,距离为10 n mile的C处,并测得渔轮正沿方位角为105的方向,以9 n mile/h的速度向某小岛靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,求舰艇的航向和靠近渔轮所需的时间.解如图所示,根据题意可知AC10,ACB120,设舰艇靠近渔轮所需的时间为t h,并在B处与渔轮相遇,则AB21t,BC9t,在ABC中,根据余弦定理得AB2AC2BC22ACBCcos120,所以21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论