高中数学第二章推理与证明2_2_2反证法课件新人教b版选修1_2_第1页
高中数学第二章推理与证明2_2_2反证法课件新人教b版选修1_2_第2页
高中数学第二章推理与证明2_2_2反证法课件新人教b版选修1_2_第3页
高中数学第二章推理与证明2_2_2反证法课件新人教b版选修1_2_第4页
高中数学第二章推理与证明2_2_2反证法课件新人教b版选修1_2_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2 反证法,第二章 2.2 直接证明与间接证明,学习目标 1.了解反证法是间接证明的一种基本方法. 2.理解反证法的思考过程,会用反证法证明数学问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点 反证法,王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”,思考1,本故事中王戎运用了什么论证思想?,答案,答案 运用了反证法思想.,思考2,反证法解题的实质是什么?,答案,答案 否定结论,导出矛盾,从而证明原结论正确.,梳理 (1)定义:一般地,由证明pq转向证明綈qrt,t与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法. (2)反证法常见的矛盾类型 与假设矛盾; 与数学公理、定理、公式、定义或已被证明了的结论矛盾; 与公认的简单事实矛盾.,题型探究,例1 设an是公比为q的等比数列.设q1,证明:数列an1不是等比数列.,证明,类型一 用反证法证明否定性命题,证明 假设an1是等比数列,则对任意的kN, (ak11)2(ak1)(ak21),,a10,2qkqk1qk1. q0,q22q10, q1,这与已知矛盾. 假设不成立,故an1不是等比数列.,(1)用反证法证明否定性命题的适用类型: 结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法. (2)用反证法证明数学命题的步骤,反思与感悟,证明,a,b,c成等比数列, b2ac, ,ac,从而abc. 这与已知a,b,c不成等差数列相矛盾, 假设不成立.,例2 a,b,c(0,2),求证:(2a)b,(2b)c,(2c)a不能都大于1.,类型二 用反证法证明“至多、至少”类问题,证明,证明 假设(2a)b,(2b)c,(2c)a都大于1. 因为a,b,c(0,2), 所以2a0,2b0,2c0.,即33,矛盾. 所以(2a)b,(2b)c,(2c)a不能都大于1.,引申探究 已知a,b,c(0,1),求证:(1a)b,(1b)c,(1c)a不能都大于 .,证明,a,b,c都是小于1的正数, 1a,1b,1c都是正数.,应用反证法常见的“结论词”与“反设词” 当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:,反思与感悟,跟踪训练2 已知a,b,c是互不相等的实数,求证:由y1ax22bxc,y2bx22cxa和y3cx22axb确定的三条抛物线至少有一条与x轴有两个不同的交点.,证明,证明 假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点, 由y1ax22bxc,y2bx22cxa,y3cx22axb, 得1(2b)24ac0,2(2c)24ab0, 且3(2a)24bc0. 同向不等式求和,得 4b24c24a24ac4ab4bc0, 所以2a22b22c22ab2bc2ac0, 所以(ab)2(bc)2(ac)20,所以abc. 这与题设a,b,c互不相等矛盾, 因此假设不成立,从而命题得证.,例3 求证:方程2x3有且只有一个根.,证明 2x3,xlog23. 这说明方程2x3有根. 下面用反证法证明方程2x3的根是唯一的. 假设方程2x3至少有两个根b1,b2(b1b2), 则 3, 3,两式相除得 1, b1b20,则b1b2,这与b1b2矛盾. 假设不成立,从而原命题得证.,证明,类型三 用反证法证明唯一性命题,用反证法证明唯一性命题的一般思路:证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,可先证“存在性”,由于假设“唯一性”结论不成立易导出矛盾,因此可用反证法证其唯一性.,反思与感悟,跟踪训练3 若函数f(x)在区间a,b上是增函数,求证:方程f(x)0在区间a,b上至多有一个实根.,证明 假设方程f(x)0在区间a,b上至少有两个实根,设、为其中的两个实根. 因为 ,不妨设,又因为函数f(x)在a,b上是增函数,所以f()f(). 这与假设f()0f()矛盾,所以方程f(x)0在区间a,b上至多有一个实根.,证明,当堂训练,1.证明“在ABC中至多有一个直角或钝角”,第一步应假设 A.三角形中至少有一个直角或钝角 B.三角形中至少有两个直角或钝角 C.三角形中没有直角或钝角 D.三角形中三个角都是直角或钝角,答案,2,3,4,5,1,2.用反证法证明“在三角形中至少有一个内角不小于60”,应先假设这个三角形中 A.有一个内角小于60 B.每一个内角都小于60 C.有一个内角大于60 D.每一个内角都大于60,答案,2,3,4,5,1,3.“ab C.ab D.ab或ab,2,3,4,5,1,答案,4.用反证法证明“在同一平面内,若ac,bc,则ab”时,应假设 A.a不垂直于c B.a,b都不垂直于c C.ab D.a与b相交,2,3,4,5,1,答案,5.用反证法证明:关于x的方程x24ax4a30,x2(a1)xa20,x22ax2a0,当a 或a1时,至少有一个方程有实数根.,2,3,4,5,1,证明,2,3,4,5,1,证明 假设三个方程都没有实数根,则由判别式都小于零,,规律与方法,用反证法证题要把握三点: (1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的. (2)反证法必须从否定结论进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论