




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二课时平面与平面垂直1.设直线m,n,平面,则下列命题正确的是(B)(A)若mn,m,n,则(B)若mn,n,m,则(C)若mn,m,n,则(D)若mn,=m,n,则解析:B中,因为mn,n,所以m,又因为m,故.2.在三棱锥ABCD中,如果ADBC,BDAD,BCD是锐角三角形,那么(C)(A)平面ABD平面ADC(B)平面ABD平面ABC(C)平面BCD平面ADC(D)平面ABC平面BCD解析:因为ADBC,BDAD,且BCBD=B,所以AD平面BCD,所以平面BCD平面ADC.故选C.3.如图所示,在立体图形DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是(C)(A)平面ABC平面ABD(B)平面ABD平面BDC(C)平面ABC平面BDE,且平面ADC平面BDE(D)平面ABC平面ADC,且平面ADC平面BDE解析:因为AB=BC,E为AC中点,所以BEAC,同理可证:DEAC.因为DEBE=E,所以AC平面BDE,又AC平面ACD,AC平面ABC.所以平面ACD平面BDE,平面ABC平面BDE,故选C.4.在空间中,l,m,n是三条不同的直线,是三个不同的平面,则下列结论不正确的是(D)(A)若,则(B)若l,l,=m,则lm(C)若,=l,则l(D)若=m,=l,=n,lm,ln,则mn解析:根据平面平行的传递性可知选项A中的结论正确;如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,可知选项B中的结论正确;如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,可知选项C中的结论正确.故选D.5.已知两条直线a,b与两个平面,b,则下列命题中正确的是若a,则ab;若ab,则a;若b,则;若,则b.(A)(A)(B)(C)(D)解析:对于,a,在内存在aa,又b,所以ba,所以ba,正确;对于,a还可以在内,所以错;对于,b,b,所以,正确;对于,b或b,故错误.故选A.6.如图,四边形ABCD为正方形,PA平面ABCD,则平面PBD与平面PAC的关系是.解析:因为PA平面ABCD,BD平面ABCD,所以BDAP.又ABCD为正方形,所以BDAC,又ACAP=A,所以BD平面PAC,而BD平面PBD,所以平面PBD平面PAC.答案:垂直7.若三棱锥三个侧面两两垂直,则顶点在底面上的射影是底面三角形的(D)(A)内心(B)外心(C)重心(D)垂心解析:三棱锥三个侧面两两垂直,则三条侧棱也两两垂直,可证侧棱与对底棱垂直,从而侧棱在底面上的射影与侧棱的对底棱垂直,故顶点在底面上的射影为三角形的垂心.8.如图,若边长为4和3与边长为4和2的两个矩形所在的平面互相垂直,则cos cos =.解析:由题意,两个矩形的对角线长分别为5,2,所以cos =,cos =,所以cos cos =2.答案:29.如图,点P在正方体ABCDA1B1C1D1的面对角线BC1上运动,则下面四个结论:三棱锥AD1PC的体积不变;A1P平面ACD1;DPBC1;平面PDB1平面ACD1.其中正确结论的序号是 .(写出所有你认为正确结论的序号)解析:连接AC,A1C1,A1B,AD1,D1C.因为AA1CC1,AA1=CC1,所以四边形AA1C1C是平行四边形,所以ACA1C1.又因为AC平面A1BC1,A1C1平面A1BC1,所以AC平面A1BC1.同理可证AD1平面A1BC1,又因为AC平面ACD1,AD1平面ACD1,且ACAD1=A,所以平面ACD1平面A1BC1.因为A1P平面A1BC1,所以A1P平面ACD1,故正确.因为BC1AD1,所以BC1平面ACD1,所以点P到平面ACD1的距离不变.又因为=,所以三棱锥AD1PC的体积不变,故正确.连接DB,DC1,DP.因为DB=DC1,所以当P为BC1的中点时才有DPBC1,故错误.因为BB1平面ABCD,AC平面ABCD,所以ACBB1.又因为ACBD,BB1BD=B,所以AC平面BB1D1D.连接B1D,又因为B1D平面BB1D1D,所以B1DAC.同理可证B1DAD1.又因为AC平面ACD1,AD1平面ACD1,ACAD1=A,所以B1D平面ACD1.又因为B1D平面PDB1,所以平面PDB1平面ACD1,故正确.答案:10.(2017山东卷)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E平面ABCD.(1)证明:A1O平面B1CD1;(2)设M是OD的中点,证明:平面A1EM平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCDA1B1C1D1为四棱柱,所以A1O1OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1OO1C.又O1C平面B1CD1,A1O平面B1CD1,所以A1O平面B1CD1.(2)因为ACBD,E,M分别为AD和OD的中点,所以EMBD.又A1E平面ABCD,BD平面ABCD,所以A1EBD.因为B1D1BD,所以EMB1D1,A1EB1D1.又 A1E, EM平面A1EM,A1EEM=E,所以B1D1平面A1EM.又B1D1平面B1CD1,所以 平面A1EM平面B1CD1.11.如图所示,在四棱锥SABCD中,平面SAD平面ABCD.四边形ABCD为正方形,且P为AD的中点,Q为SB的中点.(1)求证:CD平面SAD;(2)求证:PQ平面SCD;(3)若SA=SD,M为BC的中点,在棱SC上是否存在点N,使得平面DMN平面ABCD,并证明你的结论.证明:(1)因为四边形ABCD为正方形,所以CDAD.又平面SAD平面ABCD,且平面SAD平面ABCD=AD,所以CD平面SAD.(2)取SC的中点R,连接QR,DR.由题意知PDBC且PD=BC.在SBC中,Q为SB的中点,R为SC的中点,所以QRBC且QR=BC.所以QRPD且QR=PD,则四边形PDRQ为平行四边形,所以PQDR.又PQ平面SCD,DR平面SCD,所以PQ平面SCD.(3)解:存在点N为SC的中点,使得平面DMN平面ABCD.连接PC、DM交于点O,连接PM、SP、NM、NO,因为PDCM且PD=CM,所以四边形PMCD为平行四边形,所以PO=CO.又因为N为SC的中点,所以NOSP.因为SA=SD,所以SPAD.因为平面SAD平面ABCD,平面SAD平面ABCD=AD,并且SPAD,所以SP平面ABCD,所以NO平面ABCD.又因为NO平面DMN,所以平面DMN平面ABCD.12.如图所示,已知在BCD中,BCD=90,BC=CD=1,AB平面BCD,ADB=60,E,F分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年终大促品牌商家联合促销合同
- 和乡愁有关的课件
- 儿童睡前护理方法
- 高考数学复习:重难点题型之轨迹八类求法(原卷版)
- 二次根式(11考点梳理+11题型解读)原卷版-2024-2025学年人教版八年级数学下学期
- 读后续写万能模版写作句式讲义-高三英语二轮复习
- 爱耳日 保护耳朵51
- 小儿惊厥后护理要点
- 小儿灌肠护理技术规范
- 呼吸评估及护理课件
- 中国2型糖尿病防治指南(2020年版)
- 轮式拖拉机的设计计算书
- 机械手培训图片与课件
- 天津中煤进出口有限公司笔试
- 2024北京通州区三年级(下)期末语文试题及答案
- 看守所业务知识培训课件
- 2025年四川省建筑安全员-B证考试题库及答案
- 传输质量评估体系-全面剖析
- 路灯如何施工方案
- 养老机构九防培训课件
- 杭州市拱墅区部分校教科版六年级下册期末考试科学试卷(解析版)
评论
0/150
提交评论