离合器的设计与分析.doc_第1页
离合器的设计与分析.doc_第2页
离合器的设计与分析.doc_第3页
离合器的设计与分析.doc_第4页
离合器的设计与分析.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录目录11 绪论21.1概述21.2离合器的功用21.3离合器分类22.1 摩擦离合器的主要组成及结构型式22.1.1 组成22.2 摩擦式离合器的基本结构原理33 离合器的基本参数和尺寸43.1离合器设计所需原始数据:43.2摩擦片设计43.2.1摩擦片主要参数的选择43.2.2 摩擦片基本参数的优化73.3摩片弹簧设计93.3.1膜片弹簧主要参数的选择93.3.2 膜片弹簧的优化设计103.3.3膜片弹簧的载荷与变形关系113.3.4膜片弹簧的应力计算133.4扭转减震器设计163.4.1扭转减振器的功能163.4.2 扭转减振器的结构类型的选择163.4.3扭转减振器的参数确定173.5离合器的操纵机构设计214 离合器主要零部件的结构设计234.1 从动盘总成234.1.1摩擦片设计234.1.2从动盘毂设计234.1.3从动片设计254.2 压盘和离合器盖254.2.1压盘设计25设计小结27致谢28参考文献291 绪论1.1概述对于以内燃机为动力的汽车,离合器在机械传动系是作为一个独立总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部之间的摩擦来传递动力且能分离的装置。它主要包括主从动部分、从动部分、压紧机构和操纵机构等四个部分。1.2离合器的功用1.保证汽车平稳起步 起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。2.便于换档汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。3.防止传动系过载 汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。1.3离合器分类 汽车离合器有摩擦式离合器、液力变矩器(液力偶合器)、电磁离合器等几种。摩擦式离合器又分为湿式和干式两种。 2摩擦式离合器的结构形式及原理2.1 摩擦离合器的主要组成及结构型式2.1.1 组成摩擦离合器由主动部分(飞轮,离合器盖和压盘等),从动部分(从动盘本体,摩擦片和从动盘毂),压紧机构(螺旋弹簧或膜片弹簧),操纵机构(分离机构和离合器踏板及传动机构,助力机构等)四部分组成。主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本机构。操纵机构是使离合器主、从动部分分离的装置。2.1.2 结构型式按结构型式可分为1)周置弹簧离合器 2)中央弹簧离合器 3)膜片弹簧离合器 4)双片离合器 5)斜置拉式弹簧离合器 6)金属陶瓷离合器 7)湿式离合器。汽车离合器多采用单片盘形离合器。因其结构简单,调整方便,轴向尺寸紧凑,分离彻底,从动件转动惯量小,散热性好,采用轴向有弹性的从动盘时也能接合平顺,因此被广泛应用于各级轿车及微、中、轻型客车与货车上,在发动机转矩不大于1000Nm的大型客车和重型货车上也有所推广。因此本设计采用单片盘式离合器。2.2 摩擦式离合器的基本结构原理就摩擦式离合器本身而言,按其功能要求,结构上应由下列几部分组成:主动件、从动件、压紧弹簧和分离杠杆。其结构如图2-2所示。 (a) (b)图2-2 离合器结构简图 ( a)接合 (b)分离1飞轮;2从动盘总成;3压盘;4分离杆;5分离套筒;6分离器制动;7离合器踏板;8压紧弹簧;9离合器盖;10变速器第一轴(离合器输出轴);11分离拨叉及操纵连接杆从图2-2中可以看出,压盘3、分离杆4和压紧弹簧8一起组装在离合器盖9内,俗称为离合器盖总成。盖总成通过螺栓安装到发动机的飞轮上。飞轮1和压盘3为主动件,发动机的转矩通过这两个主动件输入。飞轮1和压盘3之间为从动件总成2,它作为从动件通过摩擦接受由主动件传来的输入转矩,并通过其中间的从动盘毂花键输出转矩(由变速器第一轴10接受)。压紧弹簧8(它可以是螺旋弹簧或膜片弹簧)通过压盘3把从动盘总成紧紧压在飞轮上,形成工作压力。当发动机工作带动飞轮1和压盘3一道旋转时通过压盘上压紧弹簧产生的工作压力所形成的摩擦力,带动从动盘总成旋转,完成转矩的输出。如图2-2(a)所示,离合器通常总是处于接合状态。当需要切断动力时驾驶员通过离合器操纵系统中的踏板7,并经过操纵传动杆系及分离拨叉11推动分离套筒5向前,消除间隙y,使分离杆4绕其在离合器盖9上的支点转动,克服压紧弹簧8的工作压力后,压盘3向后移动,从动盘总成2和压盘3脱离接触。离合器分离时的状况如图2-2(b)所示,此时,从动盘总成2不再输出转矩。分离套筒向左移动时,在消除间隙r后,输出轴10受到了制动,转速很快下降。3 离合器的基本参数和尺寸3.1离合器设计所需原始数据:原始参数:整车整备质量:1360kg排量:1.8L升最大功率:105/6200 KW/rpm 最大扭矩:177/3800 Nm/rpm主减速比:3.23一档速比:4.58滚动半径:313mm3.2摩擦片设计3.2.1摩擦片主要参数的选择采用单片摩擦离合器是利用摩擦来传递发动机扭矩的,为保证可靠度,离合器静摩擦力矩应大于发动机最大扭矩摩擦片的静压力: (3.1) ( 式中:离合器后备系数() (1)后备系数是离合器的重要参数,反映离合器传递发动机最大扭矩的可靠程度,选择时,应从以下几个方面考虑:a. 摩擦片在使用中有一定磨损后,离合器还能确保传递发动机最大扭矩;b. 防止离合器本身滑磨程度过大;c. 要求能够防止传动系过载。通常轿车和轻型货车=1.21.75。结合设计实际情况,故选择=1.5。则有可有表3.2查得 1.5。=1.5*177=265.5表3.1离合器后备系数的取值范围车型后备系数乘用车及最大总质量小于6t的商用车1.201.75最大总质量为614t的商用车1.502.25挂车1.804.00摩擦片的外径可有式: (3.3) 求得 为直径系数,取值见表3.3 取KD=14.6 得D=203.35mm。表3.2直径系数的取值范围车型直径系数乘用车14.6最大总质量为1.814.0t的商用车16.018.5(单片离合器)13.515.0(双片离合器)最大总质量大于14.0t的商用车22.524.0摩擦片的尺寸已系列化和标准化,标准如下表(部分):表3.3离合器摩擦片尺寸系列和参数外径Dmm160180200225250280300325内径dmm110125140150155165175190厚度/mm3.23.53.53.53.53.53.50.6870.6940.7000.6670.6200.5890.5830.6760.6670.6570.7030.7620.7960.8023.5单面面积cm21061321602213024024660.585取第四组数据,即:外径:225内径:150厚度:3.5:0.667:0.703单面面积cm:221摩擦片的摩擦因数取决于摩擦片所用的材料及基工作温度、单位压力和滑磨速度等因素。可由表3.4查得: 表3.4摩擦材料的摩擦因数的取值范围摩擦材料摩擦因数石棉基材料模压0.200.25编织0.250.35粉末冶金材料铜基0.250.35铁基0.300.50金属陶瓷材料0.4 摩擦面数Z为离合器从动盘数的两倍,决定于离合器所需传递转矩的大小及其结构尺寸。本题目设计单片离合器,因此Z=2。离合器间隙t是指离合器处于正常接合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合器仍能完全接合,在分离轴承和分离杠杆内端之间留有的间隙。该间隙t一般为34mm。取t=4mm。离合器的静摩擦力矩为: (3.4)与式(3.1)联立得: (3.5) 代入数据得:单位压力P0=0.25MPa。表3.5摩擦片单位压力的取值范围摩擦片材料单位压力/MPa石棉基材料模压0.150.25编织0.250.35粉末冶金材料模压0.350.50编织金属陶瓷材料0.701.503.2.2 摩擦片基本参数的优化(1)摩擦片外径D(mm)的选取应使最大圆周速度不超过6570m/s,即Vd=m/sm/s (3.6)式中,为摩擦片最大圆周速度(m/s);为发动机最高转速(r/min)。(2)摩擦片的内、外径比应在0.530.70范围内,即(3)为了保证离合器可靠地传递发动机的转矩,并防止传动系过载,不同车型的值应在一定范围内,最大范围为1.24.0。(4)为了保证扭转减振器的安装,摩擦片内径d必须大于减振器振器弹簧位置直径约50mm,即mm (5)为反映离合器传递的转矩并保护过载的能力,单位摩擦面积传递的转矩应小于其许用值,即 (3.7)式中,为单位摩擦面积传递的转矩(N.m/mm2),可按表3.6选取经检查,合格。表3.6单位摩擦面积传递转矩的许用值离合器规格028030035040 (6)为降低离合器滑磨时的热负荷,防止摩擦片损伤,对于不同车型,单位压力的最大范围为0.111.50MPa,即MPaMPaMPa(7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,离合器每一次接合的单位摩擦面积滑磨功应小于其许用值,即 (3.8)式中,为单位摩擦面积滑磨(J/mm2);为其许用值(J/mm2),对于乘用车:J/mm2,对于最大总质量小于6.0t的商用车:J/mm2,对于最大总质量大于6.0t商用车:J/mm2:W为汽车起步时离合器接合一次所产生的总滑磨功(J),可根据下式计算 (3.9)式中,为汽车总质量(Kg);为轮胎滚动半径(m);为汽车起步时所用变速器挡位的传动比;为主减速器传动比;为发动机转速r/min,计算时乘用车取r/min,商用车取r/min。其中: m Kg代入式(3.9)得J,代入式(3.8)得(乘用车取J/mm2),合格。(8)离合器接合的温升式中,t为压盘温升,不超过C;c为压盘的比热容,J/(KgC);为传到压盘的热量所占的比例,对单片离合器压盘;,为压盘的质量Kg代入,C,合格。3.3摩片弹簧设计3.3.1膜片弹簧主要参数的选择1. 比较H/h的选择此值对膜片弹簧的弹性特性影响极大,分析式(3.10)中载荷与变形1之间的函数关系可知,当时,F2为增函数;时,F1有一极值,而该极值点又恰为拐点;时,F1有一极大值和极小值;当时,F1极小值在横坐标上,见图3.1。1- 2- 3-4- 5-图3.1 膜片弹簧的弹性特性曲线为保证离合器压紧力变化不大和操纵方便,汽车离合器用膜片弹簧的H/h通常在1.52范围内选取。常用的膜片弹簧板厚为24mm,本设计 ,h=3mm ,则H=6mm 。2. R/r选择通过分析表明,R/r越小,应力越高,弹簧越硬,弹性曲线受直径误差影响越大。汽车离合器膜片弹簧根据结构布置和压紧力的要求,R/r常在1.21.3 的范围内取值。本设计中取,摩擦片的平均半径mm, 取mm则mm取整mm 则。3.圆锥底角 汽车膜片弹簧在自由状态时,圆锥底角一般在范围内,本设计中 得在之间,合格。分离指数常取为18,大尺寸膜片弹簧有取24的,对于小尺寸膜片弹簧,也有取12的,本设计所取分离指数为18。4.切槽宽度mm,mm,取mm,mm,应满足的要求。5. 压盘加载点半径和支承环加载点半径的确定应略大于且尽量接近r,应略小于R且尽量接近R。本设计取mm,mm。膜片弹簧应用优质高精度钢板制成,其碟簧部分的尺寸精度要高。国内常用的碟簧材料的为60SizMnA,当量应力可取为16001700N/mm2。6. 公差与精度离合器盖的膜片弹簧支承处,要具有大的刚度和高的尺寸精度,压力盘高度(从承压点到摩擦面的距离)公差要小,支承环和支承铆钉安装尺寸精度要高,耐磨性要好。3.3.2 膜片弹簧的优化设计(1)为了满足离合器使用性能的要求,弹簧的与初始锥角应在一定范围内,即(2)弹簧各部分有关尺寸的比值应符合一定的范围,即(3)为了使摩擦片上的压紧力分布比较均匀,推式膜片弹簧的压盘加载点半径(或拉式膜片弹簧的压盘加载点半径)应位于摩擦片的平均半径与外半径之间,即推式: 拉式: (4)根据弹簧结构布置要求,与,与之差应在一定范围内选取,即(5)膜片弹簧的分离指起分离杠杆的作用,因此杠杆比应在一定范围内选取,即推式: 拉式: 由(4)和(5)得mm,mm。3.3.3膜片弹簧的载荷与变形关系碟形弹簧的形状如以锥型垫片,见图3.2,它具有独特的弹性特征,广泛应用于机械制造业中。膜片弹簧是具有特殊结构的碟形弹簧,在碟簧的小端伸出许多由径向槽隔开的挂状部分分离指。膜片弹簧的弹性特性与尺寸如其碟簧部分的碟形弹簧完全相同(当加载点相同时)。因此,碟形弹簧有关设计公式对膜片弹簧也适用。通过支承环和压盘加在膜片弹簧上的沿圆周分布的载荷,假象集中在支承点处,用F1表示,加载点间的相对变形(轴向)为1,则压紧力F1与变形1之间的关系式为: (3.10)表3.8膜片弹簧弹性特性所用到的系数RrR1r1Hh106881059063利用Matlab软件进行P1x1特性曲线的绘制,程序和图形如下:程序如下:x1=0:0.2:7;%x1为膜片弹簧在压盘接触点处的轴向变形E=2.1*105;%弹性模量(Mpa)b=0.3;%泊松比R=106;%自由状态下碟簧部分大端半径(mm)r=88;%自由状态下碟簧部分小端半径(mm)H=6;%自由状态下碟簧部分内截锥高度(mm)h=3;%膜片弹簧钢板厚度(mm)R1=105;%压盘加载点半径(mm)r1=90;%支承环加载点半径(mm) 则可知, 上述曲线的拐点H对应着膜片弹簧的压平位置,而且则新离合器在接合状态时,膜片弹簧工作点B一般取在凸点M和拐点M之间,且靠近或在H点处,一般则取则此时校核后备系数满足要求离合器彻底分离时,膜片弹簧大端的变形量为(即为压盘的行程故压盘刚开始分离时,压盘的行程图3.2膜片弹簧的尺寸简图3.3.4膜片弹簧的应力计算假定膜片弹簧在承载过程中其子午断面刚性地绕此断面上的某中性点O转动(图3.4)。断面在O点沿圆周方向的切向应变为零,故该点的切向应力为零,O点以外的点均存在切向应变和切向应力。现选定坐标于子午断面,使坐标原点位于中性点O。令X轴平行于子午断面的上下边,其方向如上图所示,则断面上任意点的切向应力为: (3.14)式中 碟簧部分子午断面的转角(从自由状态算起)碟簧部分子有状态时的圆锥底角e 碟簧部分子午断面内中性点的半径e=(R-r)/In(R/r) (3.15)为了分析断面中断向应力的分布规律,将(3.14)式写成Y与X轴的关系式: (3.16)图3.4 切向应力在子午断面的分布由上式可知,当膜片弹簧变形位置一定时,一定的切向应力t在X-Y坐标系里呈线性分布。当时,因为的值很小,我们可以将看成,由上式可写成。此式表明,对于一定的零应力分布在中性点O而与X轴承角的直线上。从式(3.16)可以看出当时无论取任何值,都有。显然,零应力直线为K点与O点的连线,在零应力直线内侧为压应力区,外侧位拉应力区,等应力直线离应力直线越远,其应力越高。由此可知,碟簧部分内缘点B处切向压应力最大,A处切向拉应力最大,分析表明,B点的切向应力最大,计算膜片弹簧的应力只需校核B处应力就可以了,将B点的坐标X=(e-r)和Y=h/2 代入(3.17)式有: (3.17)令可以求出切向压应力达极大值的转角由于: mm所以: ,N/mm2B点作为分离指根部的一点,在分离轴承推力F2作用下还受有弯曲应力: (3.18)式中 n分离指数目 n=18 br单个分离指的根部宽mm因此: N/mm2由于rB是与切向压应力tB垂直的拉应力,所以根据最大剪应力强度理论,B点的当量应力为:N/mm2N/mm2膜片弹簧的设计应力一般都稍高于材料的局限,为提高膜片弹簧的承载能力,一般要经过以下工艺:先对其进行调质处理,得到具有较高抗疲劳能力的回火索氏体,对膜片弹簧进行强压处理(将弹簧压平并保持1214h),使其高应力区产生塑性变形以产生残余反向应力,对膜片弹簧的凹表面进行喷丸处理,提高弹簧疲劳寿命,对分离指进行局部高频淬火或镀铝,以提高其耐磨性。故膜片弹簧和当量应力不超出允许应力范围,所以用设数据合适。3.4扭转减震器设计3.4.1扭转减振器的功能为了降低汽车传动系的振动,通常在传动系中串联一个弹性一阻尼装置,它就是装在离合器从动盘上的扭转减振器。其弹性元件用来降低传动系前端的扭转刚度,降低传动系扭振系统三节点振型的固有频率,以便将较为严重的扭振车速移出常用车速范围(当然,在实际中要做到这一点是非常困难的);其阻尼元件用来消耗扭振能量,从而可有效地降低传动系的共振载荷、非共振载荷及噪声。3.4.2 扭转减振器的结构类型的选择图3.5给出了几种扭转减振器的结构图,它们之间的差异在于采用了不同的弹性元件和阻尼装置。采用圆柱螺旋弹簧和摩擦元件的扭转减振器(见图3.5a-d)得到了最广泛的应用。在这种结构中,从动片和从动盘毅上都开有6个窗口,在每个窗口中装有一个减振弹簧,因而发动机转矩由从动片传给从动盘毅时必须通过沿从动片圆周切向布置的弹簧,这样即将从动片和从动盘毅弹性地连接在一起,从而改变了传动系统的刚度。当6个弹簧属同一规格并同时起作用时,扭转减振器的弹性特性为线性的。这种具有线性特性的扭转减振器,结构较简单,广泛用于汽油机汽车中。当6个弹簧属于两种或三种规格且刚度由小变大并按先后次序进人工作时,则称为两级或三级非线性扭转减振器(图3.5e为三级的)。 采用空心圆柱形见(图3.5)或星形等其他形状的橡胶弹性元件的扭转减振器,也具有非线性的弹性特性。虽然其结构简单、橡胶变形时具有较大的内摩擦,因而不需另加阻尼装置,但由于它会使从动盘的转动惯量显著增大,且在离合器热状态下工作需用专门的橡胶制造,因此尚未得到广泛采用。从动片;2-从动盘毂;3-摩擦片;4-减振弹簧;5-碟形弹簧垫片;6-压紧弹簧;7-减振盘;8-橡胶弹性元件图3.5 减振器结构图减振器的阻尼元件多采用摩擦片,在(图3.5a)的结构中阻尼摩擦片的正压力靠从动片与减振盘间的连接铆钉建立。其结构虽简单,但当摩擦片磨损后,阻尼力矩便减小甚至消失。为了保证正压力从而阻尼力矩的稳定,可加进碟形弹簧(图3.5c,d),同时采用不同刚度的碟形弹簧和圆柱螺旋压簧分别对两组摩擦片建立不同的正压力(图3.5d),就可实现阻尼力矩的非线性变化。3.4.3扭转减振器的参数确定1、扭转减振器的角刚度减振器扭转角刚度Ca决定于减振弹簧的线刚度及结构布置尺寸,按下列公式初选角刚度 Ca13 (3-19)式中:为极限转矩,按下式计算 =(1.52.0) (3-20)式中:2.0适用乘用车,1.5适用商用车,本设计为商用车,选取2.0,为发动机最大扭矩,代入数值得=354N.M,Ca 8273.5本设计初选Ca=8000Nm/rad。2、扭转减振器最大摩擦力矩由于减振器扭转刚度Ca受结构及发动机最大转矩的限制,不可能很低,故为了在发动机工作转速范围内最有效地消振,必须合理选择减振器阻尼装置的阻尼摩擦转矩。一般可按下式初选为 =(0.060.17) (3-21)取=0.15,本设计按其选取=26.55Nm。3、扭转减振器的预紧力矩减振弹簧安装时应有一定的预紧。这样,在传递同样大小的极限转矩它将降低减振器的刚度,这是有利的,但预紧力值一般不应该大于摩擦力矩否则在反向工作时,扭转减振器将停止工作。一般选取=(0.050.15),取=0.12=21.24 Nm。4、扭转减振器的弹簧分布半径减振弹簧的分布尺寸R1的尺寸应尽可能大一些,一般取 R1 =(0.600.75)d/2 (3-22) 取 R1=0.7 d/2其中d为摩擦片内径,代入数值,得R1 =52.5mm。5、扭转减振器弹簧数目可参考表3.10选取,本设计D=225mm,故选取Z=4。表3.10减振弹簧的选取摩擦片外径6、扭转减振器减振弹簧的总压力当限位弹簧与从动盘毂之间的间隙被消除时,弹簧传递扭矩达到最大Tj = (3-23)式中:的计算应按Tj的大者来进行=3371.43N。每个弹簧工作压力 =842.8N (3-24)7、从动片相对从动盘毂的最大转角 =3.40 (3-25)8、限位销与从动盘缺口侧边的间隙 (3-26)式中:R2为限位销的安装半径,一般为2.54mm。本设计取=4。9、限位销直径限位销直径按结构布置选定,一般=9.512mm,本设计取=10。10、从动盘毂缺口宽度及安装窗口尺寸为充分利用减振器的缓冲作用,将从动片上的部分窗口尺寸做的比从动盘毂上的窗口尺寸稍大一些,如图3.6所示。 图3.6 从动盘窗口尺寸简图一般推荐A1-A=a=1.416mm。这样,当地面传来冲击时,开始只有部分弹簧参加工作,刚度较小,有利于缓和冲击。本设计取a=1.5mm,A=29mm,A1=30.5mm3.4.4减振弹簧尺寸(1)选择材料,计算许用应力根据机械原理与设计(机械工业出版社)采用65Mn弹簧钢丝, 设弹簧丝直径mm,MPa,MPa。(2)选择旋绕比,计算曲度系数根据下表选择旋绕比表3.11旋绕比的荐用范围d/mmC确定旋绕比,曲度系数(3)强度计算mm,与原来的d接近,合格。中径 mm;外径 mm(4)极限转角取 ,则mm(5)刚度计算弹簧刚度 mm其中,为最小工作力,弹簧的切变模量MPa,则弹簧的工作圈数取,总圈数为(6)弹簧的最小高度mm(7)减振弹簧的总变形量mm(8)减振弹簧的自由高度mm(9)减振弹簧预紧变形量mm(10)减振弹簧的安装高度mm(11)定位铆钉的安装位置取mm,则,mm,mm,合格。3.5离合器的操纵机构设计1.离合器操纵机构应满足的要求是3:(1)踏板力要小,轿车一般在80150N范围内,货车不大于150200N;(2)踏板行程对轿车一般在mm范围内,对货车最大不超过180mm;(3)踏板行程应能调整,以保证摩擦片磨损后分离轴承的自由行程可复原;(4)应有对踏板行程进行限位的装置,以防止操纵机构因受力过大而损坏;(5)应具有足够的刚度;(6)传动效率要高;(7)发动机振动及车架和驾驶室的变形不会影响其正常工作。2.操纵机构结构形式选择常用的离合器操纵机构,主要有机械式、液压式、机械式和液压式的操纵机构的助力器、气压式和自动操纵机构等。3.离合器踏板行程计算踏板行程由自由行程和工作行程组成: (3.27)式中,为分离轴承的自由行程,一般为mm,取mm;反映到踏板上的自由行程一般为mm;、分别为主缸和工作缸的直径;Z为摩擦片面数;为离合器分离时对偶摩擦面间的间隙,单片:mm,取mm;、为杠杆尺寸。mm,mm,mm,mmmm,mm,mm,mm得:mm,mm,合格。图3.7液压操纵机构示意图4.踏板力的计算踏板力为(3.28)式中,为离合器分离时,压紧弹簧对压盘的总压力;为操纵机构总传动比,;为机械效率,液压式:%,机械式:%;为克服回位弹簧1、2的拉力所需的踏板力,在初步设计时,可忽略之。N,%;则N合格。分离离合器所作的功为式中,为离合器拉接合状态下压紧弹簧的总压紧力,N,J合格。4 离合器主要零部件的结构设计4.1 从动盘总成4.1.1摩擦片设计离合器表面片在离合器接合过程中将遭到严重的滑磨,在相对很短的时间内产生大量的热,因此,要求面片应有下列一些综合性能:1、在工作时有相对较高的摩擦系数;2、在整个工作寿命期内应维持其摩擦特性,步希望出现,摩擦系数衰退现象;3、在短时间内能吸收相对高的能量,且有好的耐磨性能;4、能承受较高的压盘作用载荷,在离合器接合过程中表现出良好的性能。4.1.2从动盘毂设计从动盘毅的花键孔与变速器第一轴前端的花键轴以齿侧定心矩形花键的动配合相联接,以便从动盘毅能作轴向移动。花键的结构尺寸可根据从动盘外径和发动机转矩按GB1144-74选取(见表4-1)。从动盘毅花键孔键齿的有效长度约为花键外径尺寸的(1.01. 4)倍(上限用于工作条件恶劣的离合器),以保证从动盘毅沿轴向移动时不产生偏斜。表4-1 GB1144-74从动盘外径D/mm发动机转矩/Nm花键齿数n花键外径D/mm花键内径d/mm键齿宽b/mm有效齿长l/mm挤压应力/MPa16050102318320101807010262132011.820011010292342511.322515010322643011.525020010352843510.428028010353244012.730031010403254010.732538010403254511.635048010403255013.238060010403255515.241072010453656013.143080010453656513.545095010524166512.5花键尺寸选定后应进行挤压应力 ( MPa)及剪切应力j ( MPa)的强度校核: (4-1) (4-2)式中: ,分别为花键外径及内径,mm;n花键齿数;,b分别为花键的有效齿长及键齿宽,mm;z从动盘毅的数目;发动机最大转矩,Nmm。从动盘毅通常由40Cr , 45号钢、35号钢锻造,并经调质处理,HRC2832。由表4-1选取得:花键齿数n=10;花键外径D=35mm;花键内径D=32mm;键齿宽b=4mm;有效齿长l=40mm;挤压应力=12.7MPa;校核=19.342MPa;=8.324MPa符合强度得要求。4.1.3从动片设计从动片通常用1.32.0mm厚的钢板冲压而成。有时将其外缘的盘形部分磨薄至0.651.0mm,以减小其转动惯量。从动片的材料与其结构型式有关,整体式即不带波形弹簧片的从动片,一般用高碳钢(50或85号钢)或65Mn钢板,热处理硬度HRC3848;采用波形弹簧片的分开式(或组合式)从动片,从动片采用08钢板,氰化表面硬度HRC45,层深0.20.3mm;波形弹簧片采用65Mn钢板,热处理硬度 HRC4351。4.2 压盘和离合器盖4.2.1压盘设计 1.压盘参数的选择和校核压盘形状较复杂,要求传热性好、具有较高的摩擦系数及耐磨。故通常由灰铸铁HT200(密度7.210kg/m)铸成,金相组织呈珠光体结构,硬度HB170227。另外可添加少量金属元素(如镍、铁、锰合金等)以增强其机械强度。此外,压盘的结构设计还应注意其通风冷却要好,例如在压盘体内铸出导风槽。压盘的厚度初步确定后,应校核离合器一次接合的温升不应超过810温升的校核按式为: =L/mc (4-3)式中:传到压盘的热量所占的比率。对单片离合器,=0.5;m压盘的质量,2200kg;c压盘的比热容,铸铁的比热容为);L滑磨功,J。若温升过高,可适当增加压盘的厚度。压盘单件的平衡精度应不低于1520gcm。选择压盘厚度为12mm,外径280mm,内径165mm。代入公式(4-3)进行校核计算,=7.56符合标准。2.传力片参数选择取3组,每组4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论