月10日考研第三章中值定理专题上.ppt_第1页
月10日考研第三章中值定理专题上.ppt_第2页
月10日考研第三章中值定理专题上.ppt_第3页
月10日考研第三章中值定理专题上.ppt_第4页
月10日考研第三章中值定理专题上.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,第三章,中值定理及其应用,2,二、洛比达法则及其应用,一、 微分中值定理及其应用,中值定理及导数的应用,三、导数应用-研究曲线的性态,3,二、中值定理的应用,一、几个中值定理,中值定理及其应用,4,罗尔定理:,拉格朗日定理:,柯西定理:,1. 微分中值定理,一、 几个中值定理,5,其中余项,当,时为麦克劳林公式 .,若函数,内具有 n + 1 阶导数,泰勒中值定理:,6,微分中值定理之间的相互关系,罗尔定理,柯西中值定理,7,2. 零点定理与介值定理,1)零点定理 :,则至少有一点,且,使,(又叫根的存在定理).,2)介值定理:,则对 A 与 B 之间的任一数 C ,推论: 在闭区间上的连续函数必取得介于最小值与最大值,之间的任何值 .,8,3. 费马定理,取得极值,4. 积分中值定理,实质:把积分转化为被积函数在某点的函数值.,积分中值定理,微分中值定理,说明:,牛顿 莱布尼茨公式,9,研究函数或导数的性态导数的应用及求不定式的极限,1. 证明恒等式.,2. 证明不等式.,3. 证明有关中值问题的结论.,关键: 利用逆向思维 设辅助函数,经验1:,二、中值定理的主要应用,利用中值定理证明不等式的步骤:,(3) 根据 a b 的关系,证明出不等式.,(2) 利用中值定理,(1) 设出辅助函数和区间,,经验2:,经验3: 欲证,(1)设函数,(2)验证函数 在区间 上满足罗尔定理.,10,例1. 证明等式,证,由推论可知,(常数),令 x = 0 , 得,又,1.证明恒等式,典型例题分析,11,例2,的一组实数,分析:,则构造一函数,使,用罗而定理,12,证明,例2,的一组实数,由罗而定理,,证毕,13,构造辅助函数的一般方法,14,例3,分析:,(1)分析法,难!,从结论出发,把结论改写为,(2)积分法,从结论出发,15,证明,例3,16,由罗而定理,,例3,17,例4,分析:,18,并且有,由罗而定理,,例4,19,例5,其中,分析,由拉格朗日中值定理得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论