




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科分类号(二级) 110.17本科学生毕业论文(设计)题目 中学概率常用解题方法探究 姓名 段崇树 学号 094080103 院、系 数学学院 专业 数学与应用数学 指导教师 郭民之 职称(学历) 副教授(博士) 中学概率常用解题方法探究摘要:概率是高中数学课程必修的五大模块之一,也是高考必考的重要内容,同时也是与实际生活联系最紧密的部分,纵观近年高考,主要考察随机事件、等可能事件、对立事件、相互独立事件.要求学生能根据题意画出统计图,利用所学排列组合、互斥事件加法公式、相互独立事件概率乘法公式等解决实际问题.在解概率题时很多学生因为找不到正确方法而浪费太多时间.下面通过对中学概率统计的题型归纳,寻找最有效的解题策略,帮助学生提高解题能力.关键词:中学概率教学;题型归纳;解题策略 1 引言概率是高中数学学习中的重要内容,它与我们的实际生活息息相关,生产生活为它提供了很多好的素材.概率中的随机化理论充分体现了现代数学思想,是高考的重点与热点,且是每年必考的内容,考察题型主要分选择题、填空题和应用题,概率应用题几乎是每年必考的内容.同时也是高考数学相对较难的题目.高中概率学习的重点是:概率的意义;等可能事件的概率;互斥事件的概率;古典概率.难点是:处理随机事件的方法;古典概型、几何概型的特征;对应题型的解题策略.1学习过程中应通过大量的实例和动手实验,掌握正确的解题方法,综合运用各种数学思想来解决问题.本文重点拟从三个方面剖析概率解题方法:数形结合思想的解题应用;划归思想的解题应用;数学模型的解题应用.通过三种方法介绍,并且以大量例题辅助理解,帮助学生运用好的学习方法来解决问题.在此之前我们先了解关于概率的一些基本概念.a.随机事件:在条件S下可能发生也可能不发生的结果,叫做相对于条件S的随机事件,简称随机事件.2b.概率:对于给定的事件A,如果随着实验次数的增加,事件A发生的频率稳定在某个常数附近,就把这个常数记作,称为事件A的统计概率,简称为A的概率. 2c.概率的加法公式:如果事件A与B互斥,那么P(AB)=P(A)+P(B).特别的,若事件A与事件B互为对立事件,则AB为必然事件,即P(AB)=1. 2我们只有在深刻理解概率的意义及内涵,辅之以正确的学习方法.才能真正掌握概率相关知识在学习和各类考试中取得好成绩.下面,我们将详细阐述这几种重要的数学思想方法在概率中的应用,希望能起到抛砖引玉的作用,帮助同学们更好地学好概率,学好数学.2 数形结合思想在概率解题中的应用 “数形结合思想”是在整个数学学习过程中比较重要的一种数学学习思维,数与形是数学中有古老历史的两个基本量,它们在一定条件下是可以互相转化的.中学数学研究对象可分为数和形两大部分,而数与形之间的综合运用称为数形结合,作为中学中一种重要的数学思想方法,数形结合应用大致分两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系.即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”. 在我们概率问题研究过程中,由于概率问题通常比较深奥、抽象,一直是困扰学学生的难点,于是善于创设形象的数学情境,结合具体图形使概率问题变得形象生动、清晰直观的教学活动应运而生.这样的教学方法能使学生更好的把握和理解问题.华罗庚前辈曾说过:“数形结合千般好,数形分离万事休.数缺形时少直观,形缺数时难入微.4”在概率数学中可借助数学软件画出表格图、树形图、坐标图等来解决实际问题.例1(2011安徽合肥4月,8,5分)先后抛掷两枚均匀的正方体骰子(它的六个面分别标有1、2、3、4、5、6),骰子朝上的面的点数分别为x,y则的概率为 ( )A. B. C. D. 解析:这是典型的抛掷骰子问题.解决这类问题,由于基本事件个数多,有个样本点,而一一列举是件比较麻烦的事,我们通过几何直观就能很好的表现出抛掷情况.观察题目知这是一道概率与对数的综合题型,题中要求骰子朝上的面的点数分别为x,y时概率的问题.由我们知条件为满足y=2x的整数点.通过几何画板画出36个样本点,发现满足方程的点有三个,如图易见满足条件的点为:图1 直线上的格子点(1.2)、(2.4)、(3.6).所以故答案选C.点评归纳: 借助于表格图, 把随机现象的结果形象、直观、毫不遗漏地表示出来, 使解题方便、快捷!例2 (2011 南昌二模,13,5分)随机的向区域内投点,点落在区域的每一个位置都是等可能的,则坐标原点与该点连线的倾斜角小于的概率为 解析:根据题意要求坐标原点与随机点连线倾斜角小于的概率,此题为标准的几何概型.根据题意,利用几何画板画出直线和抛物线图像如图2,则所求概率为.图2 随机区域图例3 (2010山东,20,12分)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题扣2分;每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次是、,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率;(2)用X表示甲同学本轮答题结束时答题的个数,求X的分布列和数学期望.分析:本题求甲同学入围的概率,由题意可知题中A、B、C、D四个步骤,每个步骤又有两种可能,用树形图把结果画出来. 淘汰 图3 知识竞赛树形图解:(1)用A表示答对A问题,表示答错A问题;类似的用B表示答对B问题,表示答错B问题; 用C表示答对C问题,表示答错C问题;用D表示答对D问题,用表示答错D问题.则由题意可得:, , , ., , , .计“甲同学能进入下一轮”为事件Q,则.由于每题答题结果相互独立,因此 =.(2) 由题意,随机变量X的可能取值为2,3,4.由于每题答题结果相互独立,所以:,.因此随即变量X的分布列为X234P所以.例4 (2008湖南,4,5分)设随机变量X服从正态分布N(2,9),若,则c= ( )A、1 B、2 C、3 D、4解析:观察题意我们可以知道,这是标准的正态分布题型,而解决正态分布题目.我们通过直观的正态分布密度函数图形可以容易解出来.由,根据条件利用几何画板画出图像,又,由正态分布的定义知其函密度数图像关于直线对称,于是,所以.故选B答案.图4 正态分布N(2,9)密度函数图点评归纳:正态曲线性质及特点 (1)函数,(其中实数和()为参数)的图像为正态分布密度函数曲线,简称正态曲线.(2)正态曲线的特点a.曲线位于x轴的上方与x轴不相交;b.曲线是单峰的,它关于直线对称;c.曲线在x=处达到峰值;d.曲线与x轴之间的面积为1;e.当一定时,曲线随着的变化而沿着x轴移动;f.当一定时,曲线的形状由确定,越小,曲线越“高瘦”越大,曲线越“矮胖”.3 化归思想在概率解题中的应用 “化归”是“转化和归结”的简称.在中学数学中,化归不仅仅是一种重要的解题思想,也是一种最基本的思维策略.所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题.总之,化归在数学解题中几乎无处不在,化归的基本功能是:生疏化成熟悉,复杂化成简单,抽象化成直观,含糊化成明朗.总之,化归的实质就是以运动变化发展的观点,以及事物之间相互联系,相互制约的观点看待问题,善于对所要解决的问题进行变换转化,使问题得以解决.这也是辩证唯物主义的基本观点.在概率问题中,很多题型中出现的过程比较复杂,分类比较繁杂.而我们如果能通过正确的分类,或者转化解题思路,往往能达到“山重水复疑无路,柳暗花明又一村”的妙处,为此提供几种解题策略供师生们参考.3.1 特殊优选法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从特殊点入手,先解决特殊元素或特殊位置,再去解决其他元素或位置,这种解法叫做特殊优选法. 例5 (2009广东,7,5分)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同的工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A、48种 B、12种 C、18种 D、36种 解法1:分三种情况来解决,四人中有小张没小李;四人中有小李没小张;四人中既有小张又有小李,不同的选法分别是,不同的选法共有种,答案选D解法2:因为小张跟小赵只能从事前两项工作,那么先从小李、小罗、小王中先选两个从事后两项工作,再从剩下的三个人选两个人从事前两项工作,因此不同的选法共有种点评归纳:解法1采用了元素分析法:本题中小张、小赵是特殊元素,以此为分类标准分类计数,这种方法整体上属于分类计数.解法2采用了位置分析法:本题中礼仪、司机位置特殊要优先安排,该法更多的应用了分布计数原理.相比之下,本题采用解法2更为优越.3.2 巧用方程(组),通过分析数学问题中变量间的等量关系,建立方程或方程组,或者运用方程的性质去分析、转化问题,使其问题获得解决,这种方程思想的应用使概率问题解决起来更加快捷.例6 某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%、老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%、老年人占10%.为了了解各组不同年龄层次职工对本次活动的满意度,先用分层抽样的方法从参加活动的全体职工中抽取一个容量为200人的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.分析:登山组人数本该给出的却是未知的,通过设元后,可由未知变为已知. 解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有 (1) (2)解得b=50%,c=10%,则a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人数为(人);抽取的中年人数为(人);抽取的老年人数为(人).3.3 间接法:间接法用于解决正面情形复杂,而对立面相对简单的问题,再求其补集,采用的思维方式是“正难则反”.例7 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(1)恰好有2家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.解析:求较为复杂的概率时,通常有2种方法:一是将所有事的概率化为一些彼此互斥的事件的概率的和;二是先求此事件的对立事件的概率,再利用公式就可以求出所求事件的概率.从正面看,至少关闭一家煤矿,应该包括关闭1至5家5个互斥的事件,但是它的反面就简单了,即5家煤矿都不被关闭.另一方面,计算一家煤矿安检合格的概率包括一次过关和第二次才过关的概率,而其反面则是2次安检都不合格的事件同时发生了,利用正难则反原理则可以很好解决.解:(1)每家煤矿必须整改的概率是,且每家煤矿是否被关闭是相互独立的,所以恰好有2家煤矿必须整改的概率是 (2)设煤矿第一次质检合格为事件,不合格为事件;第二次质检合格为事件,不合格为事件,则每家煤矿不被关闭即合格的概率是,且每家煤矿是否关闭相互独立.所以至少关闭一家煤矿的概率是4 数学模型思想在概率解题中的应用 数学模型化思想就是把所考察的实际问题转化为数学问题,构造相应的数学模型,通过对模型的研究,使实际问题得以解决的一种数学思想.在中学概率知识中数学模型处处存在.如:古典概型、几何概型、条件概率等.下面我将简述古典概型和几何概型的解题策略.4.1 利用古典概型公式求随机事件的概率利用古典概型公式求随机事件的概率时,关键是求试验的基本事件总数n及事件A所包含的基本事件个数m . 如果基本事件的个数比较少,可用列举法将基本事件一一列出,然后求出m、n,再利用公式求出事件的概率.如果基本事件的个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识计算m、n,再运用公式求概率.例7 电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数组成,则一天中任一时刻显示的四个数字之和为23的概率为 ( )A. B. C. D.分析:由时间特点知后2个数字之和最大为5+9=14,故前2个数字之和不能小于9,前两个数字只可能为09、18、19,所以只有在09:59、18:59、19:58与19:49时,四个数字之和为23,又一天共有分钟,即只能显示1440个数字,所以所求概率为.4.2利用几何概型求概率几何概型具有两个特征:(1)实验结果有无限多个;(2)每个结果的出现是等可能的.事件A可以理解为区域的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关.若事件A若满足几何概型,则 .解决几何概率问题,关键是要构造出随机事件对应的几何图形,利用图形的的几何度量来求随机事件的概率.一般步骤如下:第一步,把样本空间和所求概率的事件用关系式表示出来,其中又分两类:a.样本空间具有明显的几何意义,样本点所在的几何区域题目中以给出.b.所求事件对应的几何区域没有直接给出,找出它们是接这类几何概率题型的关键,具体步骤是:根据题设引入适当变量.利用所求引进的变量,把题设中的条件转换成变量所满足的代数条件.第一步根据所得到的代数条件找出相应的几何区域.第二步,在坐标系中把几何图形画出来.第三步,把样本空间和所求概率的事件所在的几何图形的度量,就是如前所说的长度、面积或者体积求出来,然后带入公式即可.例8(2009广东湛江)圆有一内接正三角,向圆O随机投一点,则该点落在内接正三角形内的概率是 .解析:这是一道典型的几何概型的题目.设圆O的半径为R,则正三角形的边长为 求向圆内O投点落在正三角形的概率就是求正三角所占圆面积的概率,根据几何概型的计算公式可知.故答案为.结语:中学概率题的解题法不仅仅是以上几种,文章旨在通过以上几种比较常见的解题方法,启迪学生寻找更多更好的解题方法,旨在抛砖引玉,总的来说,要学好中学概率主要还是要理清概念,分清各个题型之间的联系.选择正确的解题方法,用正确的数学思想来指导我们解决问题.参考文献1张德然.概率论思维论M.合肥:中国科学技术大学出版社2普通高中课程标准实验教科书M,数学A版,人民教育出版社3曲一线.5年高考三年模拟M,首都师范大学出版社 2012年4曾祥红,杜苏.画图巧解概率问题J,高中数理化,2006年第10期5鮑德家.中学概率统计内容的特点及常用解题方法J,语数外学习, 2012年第9期 6刘光红.概率统计中常见解题策略J,高中数理化 7徐伯良.概率计算五法J,数理天地,2006年第8期8美G-波利亚著.阎育苏译:怎样解题M,北京:科学出版社9Ruhama Even, Tova Kvatinsky What mathematics do teachers with contrasting teaching approaches address in probability lessons?J Educational Studies in Mathematics July 2010, Volume 74, Issue 3, pp 207-222Middle school common problem solving methods to explore the probability Abstract: Probability and statistics is the high school mathematics curriculum five modules required one, but also an important content of college entrance examination, but also with the actual life most closely linke
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童咳嗽诊断试题及答案
- 法律援助考试题库及答案
- 难兄难弟考试题目及答案
- 信息安全技术与实践题库及答案
- 保洁安全知识试题及答案
- 历高考试题目录及答案
- 供应室基础试题及答案
- 2025年中国起重冶金电机行业市场调查、投资前景及策略咨询报告
- 2025年中国荞麦粥行业投资前景及策略咨询研究报告
- 2025年中国耐火喷涂料行业市场调查、投资前景及策略咨询报告
- DB50-T 548.4-2024城市道路交通管理设施设置规范第4部分:道路交通安全设施
- 项目股份买断合同范本
- 上海市2023年高中学业水平考试生物试卷真题(含答案详解)
- 校园文印店经营方案
- 2024届重庆市沙坪坝区英语八年级第二学期期末监测试题含答案
- 《几种常见的天线》课件
- 【大厂案例】华为数据治理方法论与实践解决方案
- DL-T5169-2013水工混凝土钢筋施工规范
- spss因子分析论文
- 模拟电子技术(山东联盟-山东建筑大学)智慧树知到期末考试答案章节答案2024年山东建筑大学
- 教材教辅资料进校园审核管理制度
评论
0/150
提交评论