




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.3 实际问题与二次函数(3),活动1:美丽的拱桥,0,A,探究1:公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O点恰在水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下。为使水流较为漂亮,要求设计成水流在离OA距离为1米处达到距水面最大高度2.25米。如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流落不到池外?,本题是涉及公园美化的应用性问题。,0,A,解:如图建立坐标系,设抛物线顶点 为B,水流落水与x轴交于C点。 由题意可知A(,1.25)、 顶点B(1,.25),X,Y,设抛物线为y=a(x1)2+2.25,将点A坐标代入,得a= 1 y= (x1)2+2.25,当y= 0,即(x 1) 2+2.25=0时,,x= 0.5(舍去), x=2.5,水池的半径至少要2.5米。,x= 0.5(舍去),C(3,0),B(1,3),变式.要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?,A,解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点.,因此可设这段抛物线对应的函数是,这段抛物线经过点(3,0), 0=a(31)23,解得:,因此抛物线的解析式为:,y=a(x1)23 (0x3),当x=0时,y=2.25,答:水管长应为2.25m.,如图的抛物线形拱桥,当水面在 时,拱桥顶离水面 2 m,水面宽 4 m,水面下降 1 m, 水面宽度增加多少?,探究3:,图中是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?,分析:我们知道,二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数,为解题简便,以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系,抛物线形拱桥,当水面在 时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?,0,(2,-2) ,(-2,-2) ,当 时, 所以,水面下降1m,水面的宽度为 m.,水面的宽度增加了 m,探究3:,解:如图建立如下直角坐标系,设这条抛物线解析式为,由抛物线经过点(2,-2),可得,所以,这条抛物线的二次函数为:,当水面下降1m时,水面的纵坐标为,抛物线形拱桥,当水面在 时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?,0,(4, 0) ,(0,0) ,水面的宽度增加了 m,(2,2),解:如图建立如下直角坐标系,设这条抛物线解析式为,由抛物线经过点(0,0),可得,所以,这条抛物线的二次函数为:,当 时, 所以,水面下降1m,水面的宽度为 m.,当水面下降1m时,水面的纵坐标为,0,0,注意: 在解决实际问题时,我们应建立简单方便的平面直角坐标系.,用抛物线的知识解决生活中的一些实际问题的一般步骤:,建立直角坐标系,二次函数,问题求解,找出实际问题的答案,及 时 总 结,注意变量的取值范围,x,练习:,如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用 表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?,(1)卡车可以通过.,提示:当x=1时,y =3.75, 3.7524.,(2)卡车可以通过.,提示:当x=2时,y =3, 324.,练习:,: 某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.,练习,解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.,AB=4,A(-2,0) B(2,0),OC=4.4,C(0,4.4),设抛物线所表示的二次函数为,抛物线过A(-2,0),抛物线所表示的二次函数为,汽车能顺利经过大门.,投篮问题,一场篮球赛中,小明跳起投篮,已知球出手时离地面高 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。,问此球能否投中?,3米,8米,4米,4米,0,8,(4,4),(0x8),(0x8),篮圈中心距离地面3米,此球不能投中,如图,建立平面 直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:,3,活动四:试一试 如图所示,有一座抛物线型拱桥,在正常水位AB时,水面宽20米,水位上升3米,就达到警戒线CD,这时水面宽为10米。 (1)求抛物线型拱桥的解析式。 (2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始, 在持续多少小时才能达 到拱桥顶? (3)若正常水位时,有一艘 宽8米,高2.5米的小船 能否安全通过这座桥?,解:(1)设所求抛物线的解析式为: y=ax2 设D(5,b),则B(10,b3), 把D、B的坐标分别代入y=ax2得: , 解得 , y=1/25 x2; (2)b=1, 拱桥顶O到CD的距离为1, =5小时 所以再持续5小时到达拱桥顶,实际问题,抽象,转化,数学问题,运用,数学知识,问题的解决,谈谈你的学习体会,解题步骤: 1、分析题意,把实际问题转化为数学问题,画出图形。 2、根据已知条件建立适当的平面直角坐标系。 3、选用适当的解析式求解。 4、根据二次函数的解析式解决具体的实际问题。,解二次函数应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位招聘考试综合类公共基础知识真题模拟试卷(专业)
- 2025年事业单位招聘考试公共基础知识真题模拟训练冲刺试卷
- 后宫妃子考试题库及答案
- 供应链整合与经济增长-洞察与解读
- 2025年中国五甲基二硅氧烷行业市场分析及投资价值评估前景预测报告
- 河南省文综高考试卷及答案
- 2025国考广东粮储局申论对策建议高频考点及答案
- 2025国考承德市检验检疫岗位行测必刷题及答案
- 2025国考大连市税收征管岗位申论预测卷及答案
- 碳市场价格发现机制-洞察与解读
- 2025年大学辅导员招聘考试题库:学生心理危机干预方案设计试题
- 2024-2025学年广东省广大附中大联盟九年级(上)期中联考道法试题及答案
- 塔吊使用安全事故应急救援预案
- 中国烟草招聘考试真题2024
- 2025江苏南京市玄武区卫生健康委员会所属事业单位招聘工作人员23人备考考试题库附答案解析
- 人教PEP版四年级英语上册 Unit 2 My friends 单元测试卷(含答案含听力原文)
- 2025新疆医科大学第一附属医院招聘事业单位编制外工作人员(119人)考试参考题库及答案解析
- 2024年湖南省中考数学真题及答案解析
- 2025年艾灸行业研究报告及未来行业发展趋势预测
- 世界少年奥林匹克思维能力测评地方选拔活动2024-2025学年六年级上学期数学竞赛试题B卷
- 四年级数学上册第1单元《 大数的认识 》作业设计
评论
0/150
提交评论