linux中的优先搜索树的实现.docx_第1页
linux中的优先搜索树的实现.docx_第2页
linux中的优先搜索树的实现.docx_第3页
linux中的优先搜索树的实现.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

linux中的优先搜索树的实现 prio treelinux中的优先搜索树的实现 prio tree linux中的优先搜索树的实现-prio_tree prio_tree在linux内核中被应用于反向内存映射,prio-tree是一棵查找树,它查找的是一个区间,为何将之组织成tree是一个数学问题,简单理解就是根节点包含了所有的区间,父节点代表的区间包含了子节点代表的区间,这里的包含不是现实意义的包含,而是heap/radix意义上的包含,只要满足heap的性质以及radix的性质即可,不过大多数情况下包含的意义就是现实意义的包含,Documentation中的prio_tree.txt中的图示可以看一下,4,3,7是5,2,7和6,1,7的父节点,父节点区间现实包含了两个子节点区间,而5,2,7是4,2,6和5,1,6的父节点,5,2,7就没有现实包含4,2,6,但是仍然是后者的父节点,因为它们满足了heap的性质,5,2,7的heap-index是7,大于4,2,6的heap-index。由于prio-tree首先要是一个heap(插入过程中详细说明)-处理父子关系,其次要是一个radix树-处理兄弟关系,父子间满足了heap之后还要在兄弟间满足radix性质,总之,prio-tree节点间的关系有两个层次的两种,第一层,父子关系,必须符合heap性质,第二层,兄弟关系,必须符合radix性质。以上简要介绍了prio-tree的性质,是所有实现的共性,linux内核的实现实现了自己的个性,如果看代码的话就会发现,linux引入了一些变量或者约束,使得prio-tree在性能,资源消耗以及代码可读性之间做出了一个完美的平衡,最值得推崇的就是linux的prio-tree中维护了一个图表,该图表约束了prio-tree的高度,该图表以一个数组实现,数组的内容其实就是该索引下最大的heap,每一个树节点都有一个index_bits字段,它表示了用index_bits个比特就能表达最大的heap,而此index_bits减1正是这么些比特在数组中的下标,图表如下:bit-used array-index max-heap 10 12 111 32 111 43 1111由上面的图表1可以推导出下面的等式,下面的等式优化了树的性能,促使了数的平衡,并且巧妙的处理了兄弟之间的关系,使之符合prio-tree的原始约束:bit-used+1=tree-height(等式1)根据上述等式,mask=1UL(root-index_bits-1);,这个mask代表了当前处理的层的最高位,它决定了待插入节点是插入左孩子还是插入右孩子。插入过程中,每下将一层,mask要右移一位,由于prio-tree是一棵二叉树,因此二进制的0和1就能决定左和右,这个性质和二叉radix查找树是一样的,一个二进制的数是由0和1组成的串,如果欲将之插入一棵radix树,那么从待插节点最高位开始依次操作,根据结果来进行左右抉择,每从树根处开始和树中节点的相应位进行&下降一层,比较位就右移一位,直到成功插入,这样就保证了树的radix性质,上述等式1其实并不是必不可少的,它的作用更大的意义是优化,包括代码紧凑度的优化以及时间空间的优化,没有它的话,代码不可能写成现在的prio_tree.c中如此紧凑又容易理解的形式,同时一棵树还会因为频繁的插入和删除而变得很高,这样对查找来讲是很不利的,正如宏黑树用颜色来约束平衡,AVL树用高度来约束平衡一样,prio-tree用上述等式1来约束平衡。既然用radix性质实现了一棵radix树,我们还可以用heap性质来构造一个heap,-tree了,而heap的本质上也是一棵二叉树,如果将二者合并的话,就是prio性质主要体现在父子上面,对兄弟之间并没有多大的约束,因此在prio-tree的插入过程中,基本分为三大块,第一大块是实现heap的性质,在此基础上,第二大快对待左右抉择的时候利用radix的性质以及radix的插入逻辑实现插入,两大块保证了prio-tree的性质,但是不能保证平衡性,由此在此两块的基础上尽量保证树的平衡,于是等式1起作用,以上的三块联动已经近乎完美了,但是理想情况往往不能尽满足现实需求,很多的节点都拥有相同的radix,那么根据heap的性质,它们最终将成为一个近似链表的东西,因此如果为了处理这些链表二增加树的高度(增加max-heap),那么树看起来会很不平衡的,因此单独列出一个overflow-sub-tree来处理这种情况,加入这个性质之后,prio-tree实则成了一个集heap,radix树,链表于一身的集大成,最终的结果就是prio_tree.c中的prio_tree_insert函数的实现:insert:cur=root-prio_tree_node;mask=1UL(root-index_bits-1);while(mask)GET_INDEX(cur,r_index,h_index);if(r_index=radix_index&h_index=heap_index)return cur;if(h_index heap_index|/破坏了父子约束,因此需要交换父子(h_index=heap_index&r_index radix_index)struct prio_tree_node*tmp=node;node=prio_tree_replace(root,cur,node);cur=tmp;/需要插入的node现在已经成了被替换的node index=r_index;/交换所有的索引,heap索引和radix索引.if(size_flag)index=heap_index-radix_index;else index=radix_index;if(index&mask)/此处的if-else用于确定兄弟约束,对应位为1则往右走./右孩子为空的话直接插入右孩子的位置,返回else/否则返回右孩子cur=cur-right;else/对应位为0则往左走./左孩子为空的话直接插入左孩子的位置,返回else/否则返回左孩子cur=cur-left;mask=1;/进入下一层的radix抉择if(mask)/处理overflow树mask=1UL(root-index_bits-1);size_flag=1;由于heap和radix树的逻辑都是执行过程中体现的,并且都是确定的,只有那个图表1相关的代码是prio-tree独有的,因此在prio_tree_init中必然要进行相关的初始化,可以看出,prio_tree_init进行的仅仅是图表1相关的初始化,初始化完成以后,从图表1就可以推出等式1了,由此prio-tree的运行所需要的基础设施就全部到位了:void _init prio_tree_init(void)unsigned int i;for(i=0;i ARRAY_SIZE(index_bits_to_maxindex)-1;1;i+)index_bits_to_maxindexi=(1UL(i+1)-index_bits_to_maxindexARRAY_SIZE(index_bits_to_maxindex)-1=0UL;很多树节点的remove操作都很复杂,甚至比insert还要复杂,但是对于prio-tree来讲却是很简单的,因为prio-tree节点的heap特性,并且整个prio-tree首先肯定是一个heap,所谓的radix只是在对兄弟无约束的heap加上了兄弟间的约束而已,因此remove操作完全实际上就是一个heap调整的过程,调整完heap之后无需再关心树的radix性质,因为它只要首先是一个heap即可,在remove的每一步操作中,只要能保证树的heap性质就可以了,只需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论