2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版.doc_第1页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版.doc_第2页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版.doc_第3页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版.doc_第4页
2018版高中数学第二章平面解析几何初步2.1.6点到直线的距离学案苏教版.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1.6点到直线的距离学习目标1.了解点到直线距离公式的推导方法.2.掌握点到直线的距离公式,并能灵活应用于求平行线间的距离等问题.知识点一点到直线的距离思考1一般地,对于直线l:AxByC0(A0,B0)外一点P(x0,y0),点P到直线的距离为d,过点P分别作x轴和y轴的平行线,交直线l于R和S,则d同线段PS,PR,RS间存在什么关系?思考2根据思考1的思路,点P到直线AxByC0的距离d怎样用A,B,C及x0,y0表示?思考3点到直线的距离公式对于A0或B0时的直线是否仍然适用?梳理(1)定义:点到直线的垂线段的长度.(2)图示:(3)公式:d_.知识点二两条平行直线间的距离思考直线l1:xy10上有A(1,0)、B(0,1)、C(1,2)三点,直线l2:xy10与直线l1平行,那么点A、B、C到直线l2的距离分别为多少?有什么规律吗?梳理(1)定义:夹在两平行线间的公垂线段的长.(2)图示:(3)求法:转化为点到直线的距离.(4)公式:两条平行直线l1:AxByC10与l2:AxByC20之间的距离d.类型一点到直线的距离例1(1)求点P(2,3)到下列直线的距离.yx;3y4;x3.(2)求过点M(1,2),且与点A(2,3),B(4,5)距离相等的直线l的方程.反思与感悟(1)应用点到直线的距离公式时应注意的三个问题直线方程应为一般式,若给出其他形式应化为一般式.点P在直线l上时,点到直线的距离为0,公式仍然适用.直线方程AxByC0,当A0或B0时公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.(2)用待定系数法求直线方程时,首先考虑斜率不存在是否满足题意.跟踪训练1(1)若点(4,a)到直线4x3y0的距离不大于3,则a的取值范围是_;(2)已知直线l过点P(3,4)且与点A(2,2),B(4,2)等距离,则直线l的方程为_.类型二两平行线间的距离例2(1)若两直线3xy30和6xmy10平行,则它们之间的距离为_.(2)已知直线l与两直线l1:2xy30和l2:2xy10的距离相等,则直线l的方程为_.反思与感悟求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:ykxb1,l2:ykxb2,且b1b2时,d;当直线l1:AxByC10,l2:AxByC20,且C1C2时,d.但必须注意两直线方程中x,y的系数对应相等.跟踪训练2(1)求与直线l:5x12y60平行且到l的距离为2的直线方程;(2)两平行直线l1,l2分别过P1(1,0),P2(0,5),若l1与l2的距离为5,求两直线方程.1.点P(1,2)到直线3x10的距离为_.2.若点(1,2)到直线xya0的距离为,则实数a的值为_.3.已知点P为x轴上一点,且点P到直线3x4y60的距离为6,则点P的坐标为_.4.到直线3x4y10的距离为3,且与此直线平行的直线方程为_.5.若点P到直线5x12y130和直线3x4y50的距离相等,则点P的坐标应满足的方程是_.1.点到直线的距离即是点与直线上点连线的距离的最小值,利用点到直线的距离公式,解题时要注意把直线方程化为一般式.当直线与坐标轴垂直时可直接求之.2.利用点到直线的距离公式可求直线的方程,有时需结合图形,数形结合,使问题更清晰.3.已知两平行直线,其距离可利用公式d求解,也可在已知直线上取一点,转化为点到直线的距离.答案精析问题导学知识点一思考1d.思考2d.思考3仍然适用,当A0,B0时,直线l的方程为ByC0,即y,d|y0|,适合公式当B0,A0时,直线l的方程为AxC0,x,d|x0|,适合公式梳理(3)知识点二思考点A、B、C到直线l2的距离分别为、.规律是当两直线平行时,一条直线上任一点到另一条直线的距离都相等题型探究例1(1)yx可化为4x3y10,点P(2,3)到该直线的距离为.3y4可化为3y40,由点到直线的距离公式得.x3可化为x30,由点到直线的距离公式得1.(2)解当过点M(1,2)的直线l的斜率不存在时,直线l的方程为x1,恰好与A(2,3),B(4,5)两点的距离相等,故x1满足题意当过点M(1,2)的直线l的斜率存在时,设l的方程为y2k(x1),即kxyk20.由点A(2,3)与B(4,5)到直线l的距离相等,得,解得k,此时l的方程为y2(x1),即x3y50.综上所述,直线l的方程为x1或x3y50.跟踪训练1(1),(2)2xy20或2x3y180例2(1)(2)2xy10跟踪训练2解(1)设所求直线方程为5x12yC0,在直线5x12y60上取一点P0,则点P0到直线5x12yC0的距离为,由题意,得2,所以C32或C20,故所求直线方程为5x12y320或5x12y200.(2)依题意,两直线的斜率都存在,设l1:yk(x1),即kxyk0,l2:ykx5,即kxy50.因为l1与l2的距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论