




已阅读5页,还剩83页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章 导数和微分,1 导数的概念,一、问题的提出,1.自由落体运动的瞬时速度问题,如图,取极限得,2.切线问题,割线的极限位置切线位置,播放,如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线.,极限位置即,二、导数的定义,定义,其它形式,即,关于导数的说明:,注意:,播放,2.导函数(瞬时变化率)是函数平均变化率的逼近函数.,2.右导数:,单侧导数,1.左导数:,三、由定义求导数,步骤:,例1,解,例2,解,例3,解,更一般地,例如,例4,解,例5,解,例6,解,四、导数的几何意义与物理意义,1.几何意义,切线方程为,法线方程为,例7,解,由导数的几何意义, 得切线斜率为,所求切线方程为,法线方程为,2.物理意义,非均匀变化量的瞬时变化率.,变速直线运动:路程对时间的导数为物体的瞬时速度.,交流电路:电量对时间的导数为电流强度.,非均匀的物体:质量对长度(面积,体积)的导数为物体的线(面,体)密度.,五、可导与连续的关系,定理 凡可导函数都是连续函数.,证,连续函数不存在导数举例,例如,注意: 该定理的逆定理不成立.,例如,例如,例8,解,六、小结,1. 导数的实质: 增量比的极限;,3. 导数的几何意义: 切线的斜率;,4. 函数可导一定连续,但连续不一定可导;,5. 求导数最基本的方法: 由定义求导数.,6. 判断可导性,不连续,一定不可导.,连续,直接用定义;,看左右导数是否存在且相等.,思考题,思考题解答,练习题答案,3 隐函数与参变量函数的导数,一、隐函数的导数,定义:,隐函数的显化,问题:隐函数不易显化或不能显化如何求导?,隐函数求导法则:,用复合函数求导法则直接对方程两边求导.,例1,解,解得,例2,解,所求切线方程为,显然通过原点.,例3,解,二、对数求导法,观察函数,方法:,先在方程两边取对数, 然后利用隐函数的求导方法求出导数.,-对数求导法,适用范围:,例4,解,等式两边取对数得,例5,解,等式两边取对数得,一般地,三、由参数方程所确定的函数的导数,例如,消去参数,问题: 消参困难或无法消参如何求导?,由复合函数及反函数的求导法则得,例6,解,所求切线方程为,例7,解,例8,解,四、相关变化率,相关变化率问题:,已知其中一个变化率时如何求出另一个变化率?,例9,解,仰角增加率,例10,解,水面上升之速率,五、小结,隐函数求导法则: 直接对方程两边求导;,对数求导法: 对方程两边取对数,按隐函数的求导法则求导;,参数方程求导: 实质上是利用复合函数求导法则;,相关变化率: 通过函数关系确定两个相互依赖的变化率; 解法: 通过建立两者之间的关系, 用链式求导法求解.,思考题,思考题解答,不对,练 习 题,练习题答案,5 微 分,一、问题的提出,实例:正方形金属薄片受热后面积的改变量.,再例如,既容易计算又是较好的近似值,问题:这个线性函数(改变量的主要部分)是否所有函数的改变量都有?它是什么?如何求?,二、微分的定义,定义,(微分的实质),由定义知:,三、可微的条件,定理,证,(1) 必要性,(2) 充分性,例1,解,四、微分的几何意义,M,N,),几何意义:(如图),五、微分的求法,求法: 计算函数的导数, 乘以自变量的微分.,1.基本初等函数的微分公式,2. 函数和、差、积、商的微分法则,例2,解,例3,解,六、微分形式的不变性,结论:,微分形式的不变性,例4,解,例3,解,例5,解,在下列等式左端的括号中填入适当的函数,使等式成立.,七、小结,微分学所要解决的两类问题:,函数的变化率问题,函数的增量问题,微分的概念,导数的概念,求导数与微分的方法,叫做微分法.,研究微分法与导数理论及其应用的科学,叫做微分学.,导数与微分的联系:,导数与微分的区别:,思考题,思考题解答,说法不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年竞赛活动策划合同书
- 2025建筑工程合同争议解决法律依据解析
- 化肥厂服务供应商评估规定
- (2024年秋季版)山东省邹平县七年级历史下册 第三单元 第17课 统一多民族国家的巩固和发展说课稿 北师大版
- 2.5 春天的故事 教学设计-2023-2024学年高一上学期音乐湘教版(2019)必修音乐鉴赏
- 二年级品德与生活上册 收获的感觉真好说课稿2 北师大版
- 关于春节放假的通知范文集合4篇
- 公司个人的上半年工作总结
- 中医期末试题及答案
- 安徽省马鞍山市第七中学2024-2025学年部编版九年级上学期期末考试历史试题(含答案)
- 解除定向委培协议书
- 气血疏通中级班教材
- 肾病(血透)专业医疗质量控制指标考核试题
- 杨国语-新生儿心律失常
- 汽车维修店租赁协议
- GB/T 19964-2024光伏发电站接入电力系统技术规定
- 变电站主辅设备监视及一键顺控课件
- 高中英语外研版(2019)必修第一册各单元重点短语整理清单素材
- 二十周年校庆领导致辞
- 马克思的博士论文
- 内科护理学讲义-循环系统疾病病人的护理
评论
0/150
提交评论