




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
板块命题点专练(十) 立体几何命题点一空间几何体的三视图及表面积与体积1(2018浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A2 B4C6 D8解析:选C由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,该几何体的体积为V(21)226.2.(2018全国卷)某圆柱的高为2,底面周长为16,其三视图如图所示圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A2 B2C3 D2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图所示圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图所示,连接MN,则图中MN即为M到N的最短路径ON164,OM2,MN2.3(2018北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A1 B2C3 D4解析:选C由三视图得到空间几何体的直观图如图所示,则PA平面ABCD,四边形ABCD为直角梯形,PAABAD2,BC1,所以PAAD,PAAB,PABC.又BCAB,ABPAA,所以BC平面PAB.所以BCPB.在PCD中,PD2,PC3,CD,所以PCD为锐角三角形所以侧面中的直角三角形为PAB,PAD,PBC,共3个4(2017北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A60 B30C20 D10解析:选D如图,把三棱锥ABCD放到长方体中,长方体的长、宽、高分别为5,3,4,BCD为直角三角形,直角边分别为5和3,三棱锥ABCD的高为4,故该三棱锥的体积V53410.5.(2018天津高考)已知正方体ABCDA1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为_解析:连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EHAC,EHAC,因为F,G分别为B1A,B1C的中点,所以FGAC,FGAC,所以EHFG,EHFG,所以四边形EHGF为平行四边形,又EGHF,EHHG,所以四边形EHGF为正方形,又点M到平面EHGF的距离为,所以四棱锥MEFGH的体积为2.答案:6(2018全国卷)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45,若SAB的面积为5,则该圆锥的侧面积为_解析:如图,SA与底面成45角,SAO为等腰直角三角形设OAr,则SOr,SASBr.在SAB中,cosASB,sin ASB,SSABSASBsinASB(r)25,解得r2,SAr4,即母线长l4,S圆锥侧rl2440.答案:40命题点二组合体的“切”“接”问题1(2018全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为()A12 B18C24 D54解析:选B由等边ABC的面积为9,可得AB29,所以AB6,所以等边ABC的外接圆的半径为rAB2.设球的半径为R,球心到等边ABC的外接圆圆心的距离为d,则d2.所以三棱锥DABC高的最大值为246,所以三棱锥DABC 体积的最大值为9618.2(2017天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_解析:由正方体的表面积为18,得正方体的棱长为.设该正方体外接球的半径为R,则2R3,R,所以这个球的体积为R3.答案:3(2017江苏高考)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_解析:设球O的半径为R,因为球O与圆柱O1O2的上、下底面及母线均相切,所以圆柱的底面半径为R、高为2R,所以.答案:命题点三直线、平面平行与垂直的判定与性质1(2018全国卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC.(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由解:(1)证明:由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,又DM平面CMD,所以BCDM.因为M为上异于C,D的点,且CD为直径,所以DMMC.又BCMCC,所以DM平面BMC.因为DM平面AMD,所以平面AMD平面BMC.(2)当P为AM的中点时,MC平面PBD.证明如下:连接AC交BD于O.因为四边形ABCD为矩形,所以O为AC的中点连接OP,因为P为AM中点,所以MCOP.又MC平面PBD,OP平面PBD,所以MC平面PBD.2(2018全国卷)如图,在三棱锥PABC 中,ABBC2,PAPBPCAC4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC2MB,求点C到平面POM的距离解:(1)证明:因为PAPCAC4,O为AC的中点,所以POAC,且PO2.连接OB,因为ABBCAC,所以ABC为等腰直角三角形,且OBAC,OBAC2.所以PO2OB2PB2,所以POOB.又因为ACOBO,所以PO平面ABC.(2)如图,作CHOM,垂足为H,又由(1)可得POCH,且POOMO,所以CH平面POM.故CH的长为点C到平面POM的距离由题设可知OCAC2,MCBC,ACB45,所以OM,CH.所以点C到平面POM的距离为.3(2018北京高考)如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PAPD,E,F分别为AD,PB的中点(1)求证:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.证明:(1)因为PAPD,E为AD的中点,所以PEAD.因为底面ABCD为矩形,所以BCAD,所以PEBC.(2)因为底面ABCD为矩形,所以ABAD.又因为平面PAD平面ABCD,平面PAD平面ABCDAD,AB平面ABCD,所以AB平面PAD,因为PD平面PAD,所以ABPD.又因为PAPD,ABPAA,所以PD平面PAB.因为PD平面PCD,所以平面PAB平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FGBC,FGBC.因为四边形ABCD为矩形,且E为AD的中点,所以DEBC,DEBC.所以DEFG,DEFG.所以四边形DEFG为平行四边形所以EFDG.又因为EF平面PCD,DG平面PCD,所以EF平面PCD.4.(2018江苏高考)在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1.求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC.证明:(1)在平行六面体ABCDA1B1C1D1中,ABA1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1AB,所以四边形ABB1A1为菱形,因此AB1A1B.因为AB1B1C1,BCB1C1,所以AB1BC.因为A1BBCB,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC.命题点四空间角度问题1(2018全国卷)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A. B.C. D.解析:选C如图,连接BE,因为ABCD,所以异面直线AE与CD所成的角为EAB或其补角在RtABE中,设AB2,则BE,则tanEAB,所以异面直线AE与CD所成角的正切值为.2(2018全国卷)在长方体ABCDA1B1C1D1中,ABBC2,AC1与平面BB1C1C所成的角为30,则该长方体的体积为()A8 B6C8 D8解析:选C如图,连接AC1,BC1,AC.AB平面BB1C1C,AC1B为直线AC1与平面BB1C1C所成的角,AC1B30.又ABBC2,在RtABC1中,AC14.在RtACC1中,CC12,V长方体ABBCCC12228.3(2018全国卷)已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B.C. D.解析:选A如图所示,在正方体ABCDA1B1C1D1中,平面AB1D1与棱A1A,A1B1,A1D1所成的角都相等,又正方体的其余棱都分别与A1A,A1B1,A1D1平行,故正方体ABCDA1B1C1D1的每条棱所在直线与平面AB1D1所成的角都相等如图所示,取棱AB,BB1,B1C1,C1D1,D1D,DA的中点E,F,G,H,M,N,则正六边形EFGHMN所在平面与平面AB1D1平行且面积最大,此截面面积为S正六边形EFGHMN6sin 60.4(2018浙江高考)已知四棱锥SABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为1,SE与平面ABCD所成的角为2,二面角SABC的平面角为3,则()A123 B321C132 D231解析:选D如图,不妨设底面正方形的边长为2,E为AB上靠近点A的四等分点,E为AB的中点,S到底面的距离SO1,以EE,EO为邻边作矩形OOEE,则SEO1,SEO2,SEO3.由题意,得tan 1,tan 2,tan 31,此时tan 2tan 3tan 1,由图可知1,2,3,故231.当E在AB中点处时,231.故选D.5.(2018天津高考)如图,在四面体ABCD中,ABC是等边三角形,平面ABC平面ABD,点M为棱AB的中点,AB2,AD2,BAD90.(1)求证:ADBC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值解:(1)证明:因为平面ABC平面ABD,平面ABC平面ABDAB,ADAB,AD平面ABD,所以AD平面ABC.因为BC平面ABC,所以ADBC.(2)取棱AC的中点N,连接MN,ND.因为M为棱AB的中点,所以MNBC.所以DMN(或其补角)为异面直线BC与MD所成的角在RtDAM中,AD2,AM1,所以DM.因为AD平面ABC,AC平面ABC,所以ADAC.在RtDAN中,AN1,所以DN.在等腰三角形DMN中,MN1,可得cosDMN.所以异面直线BC与MD所成角的余弦值为.(3)连接CM.因为ABC为等边三角形,M为边AB的中点,所以CMAB,CM.因为平面ABC平面ABD,平面ABC平面ABDAB,CM平面ABC,所以CM平面ABD,所以CDM为直线CD与平面ABD所成的角在RtCAD中,CD4.在RtCMD中,sinCDM.所以直线CD与平面ABD所成角的正弦值为.6(2015浙江高考)如图,在三棱柱ABCA1B1C1中,BAC90,ABAC2,A1A4,A1在底面ABC的射影为BC的中点,D是B1C1的中点(1)证明:A1D平面A1BC;(2)求二面角A1BDB1的平面角的余弦值解:(1)证明:设E为BC的中点,连接AE,DE,A1E.由题意得A1E平面ABC,所以A1EAE.因为ABAC,所以AEBC.故AE平面A1BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年线下演出市场复苏中的演出市场产业链协同效应研究报告
- WPS与其他软件的整合试题及答案
- 信息技术变革与网络管理趋势试题及答案
- Photoshop打印设置知识试题及答案
- 2025年计算机一级Photoshop素材整合技巧试题及答案
- 文学实现情感共鸣的手段2025年试题及答案
- 办公室自动化的新篇章数字化转型的探索
- 康复医疗器械市场需求变化对产品创新设计的影响研究报告
- Photoshop调色技巧与方法试题及答案
- 计算机一级Msoffice学习适应性探讨试题及答案
- 倒虹吸管设计-认识倒虹吸管
- 纪检监察机关查办案件工作的技巧及谈话策略
- 国有企业招标采购相关法律法规与国有企业采购操作规范
- 《烧(创)伤的急救复苏与麻醉管理》智慧树知到课后章节答案2023年下中国人民解放军总医院第四医学中心
- 2023-2024学年宝鸡市数学六年级第一学期期末统考试题含答案
- 呼吸衰竭与急性呼吸窘迫综合征课件
- 师德师风负面清单及整改台账
- 胃穿孔修补术课件
- 免疫细胞及其功能检验技术(免疫学检验课件)
- 车间生产台帐表
- 小型水电站建设工程验收规程
评论
0/150
提交评论